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ABSTRACT 

Mini-LED and micro-LED are emerging disruptive display technologies, because they can 

work as local dimmable backlight to significantly enhance the dynamic range of conventional 

LCDs, or as sunlight readable emissive displays. However, there are still unresolved issues 

impairing their display fidelity: 1) motion blur on high-resolution, large-size and high-luminance 

devices, 2) limited contrast ratio on mini-LED backlit LCD (mLED-LCD), 3) relatively high 

power consumption, and 4) compromised ambient contrast ratio. This dissertation tackles with 

each of these issues for achieving high display fidelity. 

Motion blur is caused by slow liquid crystal response time and image update delays. Low-

duty ratio operation can suppress motion blur in emissive displays. However, it induces driving 

burdens on high-resolution, large-size and high-luminance mLED-LCD panel electronics and 

demands fast-response liquid crystals. In order to overcome these challenges, in Chapter 2, we 

propose a novel image-corrected segmented progressive emission method for mitigating the 

motion blur of mLED-LCDs. In parallel, in Chapter 3 and Chapter 4, we report new liquid crystal 

materials with submillisecond response time. 

High dynamic range displays require high peak luminance, true black state and high 

contrast ratio. While emissive displays intrinsically exhibit high contrast ratio, for LCDs it is 

limited to 1000:1 ~ 5000:1. In Chapter 5, we develop a simplified model for optimizing mLED-

LCD to suppress the halo effect and achieve the same image quality as emissive displays. On the 

other hand, high luminance may give rise to short battery time and thermal management issues in 

displays with low power efficiency. In Chapter 6, we build a new model for mini-LED/micro-LED 

displays to simulate and optimize the power efficiency. In Chapter 7, we jointly consider the LED 
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external quantum efficiency, system optical efficiency and structure-determined ambient light 

reflection to guide the designs for high ambient contrast ratio with optimal efficiency. 
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CHAPTER 1 INTRODUCTION 

Over the past century, display technology has been advanced tremendously. In 1920s, 

bulky and heavy cathode ray tube (CRT) display opened the display market. Since 2000s, high-

image-quality and high-reliability non-emissive liquid crystal display (LCD) became the 

mainstream [1-6]. Later, new features such as thinner and flexible profile are desirable. In the past 

decade, emissive organic light-emitting diode (OLED) display has grown rapidly and stands out 

especially in mobile devices and TVs for the advantages of lesser thickness, free form factor and 

exceptional dark state [7-13]. However, some critical issues such as burn-in and lifetime remain 

to be improved [14-16]. Recently, the emerging micro-LED (μLED) [17-20] and mini-LED 

(mLED) [19,21] technologies are receiving increasing attention for promising features of fast 

response time, high dynamic range, low power consumption, long lifetime, free form factor etc. 

Both μLED and mLED can be used as emissive displays, where each LED chip serves as a subpixel. 

While mLED can also be two-dimensionally arrayed in the backlight unit of LCD to fulfill local 

dimming function. Presently, mLED/μLED displays are still immature for mass production due to 

the challenges in optical performance, manufacturing and cost. This dissertation is dedicated to 

address technical challenges from the aspect of optical system design and display performance. 

Specifically, we concentrate on four criteria: motion blur, contrast ratio, power efficiency and 

ambient contrast ratio. Three system configurations – RGB-chip emissive display, color 

conversion emissive display and mini-LED backlit LCD (mLED-LCD) – are analyzed. 

The first study is in motion blur, which has been presented by motion picture response time 

[22,23]. Motion blur is the image persistence observed on fast-moving objects in display. As 

shown in Figure 1-1, when the object in Figure 1-1(a) is moving at a high speed on the screen, 
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viewers may notice a blurry profile as Figure 1-1(b) shows. Image persistence comes from slow 

pixel response time and image update delays; the former reflects the switching speed of each pixel, 

and the latter is determined by emission pattern. In mLED/μLED emissive displays, LED response 

time is negligible so that motion blur can be alleviated by increasing frame rate or by employing 

low-duty-ratio simultaneous emission pattern. In mLED-LCD, the application of above two 

methods is limited because of three-folded reasons: 1) High-resolution and large-size panels 

require relatively long data input time so that high frame rate is not preferred. 2) High duty ratio 

helps maintain high luminance and prevents LED from working in the low efficiency region. 3) 

Slow liquid crystal (LC) response time could make the efforts on emission pattern innovation in 

vain. In order to mitigate motion blur in high-resolution, large-size and high-luminance mLED-

LCDs, we propose and verify an image-corrected segmented progressive emission pattern in 

Chapter 2, and report new submillisecond LC materials in Chapter 3 and Chapter 4.  

 

Figure 1-1 Illustration of motion blur. (a) Original profile of the displayed object. (b) Perceived 
blurry profile when the object is moving with a high speed in display. 

High dynamic range displays require high peak luminance, uncompromising black state 

and high contrast ratio [24-26]. Our second study is in contrast ratio. While emissive displays 

intrinsically exhibit > 1 000 000:1 contrast ratio, for LCDs it is limited to 1000:1 ~ 5000:1. Mini-
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LED backlight unit can enhance LCD’s contrast ratio by local dimming [21,27-30]. The backlight 

is segmented into zone structure; each zone contains several mLED chips to control the panel 

luminance and each zone can be independently turned-on and -off. However, local dimming LCDs 

are vulnerable to halo effect. For example, Figure 1-2(a) shows the target image content, but the 

displayed image on a local dimming LCD can be like Figure 1-2(b). Around the bright object we 

can see severe light leakage – the so-called halo. Halo effect can be alleviated by increasing the 

LCD contrast ratio, using larger number of local dimming zones and confining light in each zone. 

However, these solutions also lead to increased panel cost. In order to know how many local 

dimming zones and which light profiles are required for faithful image reproduction, in Chapter 5, 

we develop a model for simulating and optimizing mLED-LCD system. We demonstrate that halo 

effect and clipping effect can be suppressed to an unnoticeable level on mLED-LCD, and the image 

quality can be as high as emissive displays. 

 

Figure 1-2 (a) Target image. (b) Local dimming displayed image with halo effect around the 
bright object. 

The third study is in power efficiency. High power efficiency is a prerequisite to achieve 

high luminance in high dynamic range display, which prevents short battery time and thermal 

management issues. Mini-LED/Micro-μLED emissive displays have high optical efficiency and 

long lifetime. However, the external quantum efficiency of inorganic mLED/μLED is very 



4 

 

sensitive to chip size and current density [20,31,32]. If improperly operated, most of the energy 

will be consumed by non-radiative recombination and the power efficiency could be pretty low. 

In order to resolve this issue, in Chapter 6, we build a model considering both LED physics and 

optical system structures for simulating and optimizing the power efficiency of mLED/μLED 

displays. The model is found in good agreement with experimental measurements. 

Nevertheless, we care about practical application scenarios. Similar to OLED displays, 

mLED/μLED emissive displays are vulnerable to ambient reflection, which degrades the perceived 

ambient contrast ratio (ACR) [33]. The focus of our fourth study – ACR is determined by three 

factors: the ambient illuminance, the display peak luminance and the luminous reflectance of the 

panel. Increasing display luminance helps enhance ACR, which can be achieved by the methods 

discussed in Chapter 6. Furthermore, in Chapter 7 we investigate in the luminous reflectance 

change with optical structures. Considering both power efficiency and luminous reflectance, we 

define a figure-of-merit to systematically optimize the structure of mLED/μLED emissive displays, 

and suggest system configurations to provide the highest ACR. 
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CHAPTER 2 MOTION BLUR SUPPRESSION 

2.1 Introduction 

Motion blur is the image persistence observed on fast-moving objects in displays. This 

defect is caused by slow pixel response time and image update delays. The first factor – pixel 

response time – is material determined. It is at nanosecond level for inorganic LEDs and quantum 

dot color convertors, at microsecond level for organic LEDs, and takes a few milliseconds in LCDs. 

To suppress motion blur, submillisecond pixel response time is highly desirable. It has been 

satisfied on mLED/μLED emissive displays, while remains challenging on mLED-LCD. To 

resolve this issue, we will report new LC materials with submillisecond response time in Chapter 

3 and Chapter 4. 

In this chapter, we concentrate on the second factor – image update delays, which is related 

to emission pattern. Continuous progressive emission is the dominant emission pattern in LCD. 

Whereas, in order to mitigate motion blur in this emission pattern, panels need to be operated at 

high frame rate, indicating high power consumption. Simultaneous emission with low duty ratio 

can effectively suppress motion blur in emissive displays [22,23]. However, the application of 

simultaneous emission on LCD is mainly constrained in small-size and low-luminance virtual 

reality panels [34]. On the contrary, large panels normally utilize low-cost a-Si TFTs (amorphous 

silicon thin-film transistors) and require relatively long data input time, which is the short plate of 

simultaneous emission. Segmented progressive emission detours the slow LC response time issue 

of local dimming LCD [35], but suffers from relatively long image update delay. In this chapter, 

we propose a subframe image content correction method for segmented progressive emission 
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pattern. It works for high-resolution, large-size and high-luminance mLED-LCD. In subjective 

experiments, we prove that our new method alleviates motion blur significantly. 

2.2 Image persistence time 

Previously, the analysis of image persistence was mainly focused on temporal delay – 

presented by motion picture response time (MPRT) [22,23] – while spatial delay also elongates 

image persistence time (timage). In order to describe image update delay accurately, we consider 

both temporal delay and spatial delay in continuous progressive emission, simultaneous emission 

and segmented progressive emission patterns, and use timage as the metric of motion blur. 

2.2.1 Continuous progressive emission 

Continuous progressive emission is the mainstream choice for the merits of wide 

compatibility with different display technologies, simple circuitry design and low charging burden. 

Figure 2-1 illustrates the continuous progressive emission patterns for a conventional active matrix 

(AM) LCD [Figure 2-1(a)], an AM emissive display [Figure 2-1(b)], and a passive matrix (PM) 

emissive display [Figure 2-1(c)]. As the axis at the bottom of Figure 2-1 denotes, in horizontal 

direction is the time axis. Here we plot Frame k and Frame k+1. In vertical direction is a spatial 

axis. From the top to the bottom of each schematic are the 1st row to the Nth row. In each frame, 

the signal is updated row by row via sequentially opening gate transistors G1 ~ GN. In Frame k, 

the gates are opened along the left hypotenuses of the magenta parallelogram. The corresponding 

data input time (tscan) equals to frame time (Tf). As an example, the data input time per row of a 
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60-Hz 4K2K-resolution panel is Tf / Ngate = 16.7 ms / 2160 rows = 7.72 µs/row. This relatively 

long data input time helps accomplish effective charging. The unsynchronized signal update on 

each row causes spatial delay. This spatial delay can be presented by 0.8 tscan, in which time 

duration from 10% to 90% spatial area is updated.  

 

Figure 2-1 Continuous progressive emission patterns of (a) a conventional AM LCD, (b) an AM 
emissive displays and (c) a PM emissive displays. 

For each row, the temporal delay is generated from pixel response time (τ) and LED 

emission time (tem). In Figure 2-1, τ is the width of the blue parallelograms, which normally takes 

a few milliseconds in conventional LCDs and is negligible in emissive displays. The yellow color 

in Figure 2-1 denotes the light emission period. In conventional LCDs [Figure 2-1(a)], the 
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backlight is turned on for the whole frame. In AM emissive displays [Figure 2-1(b)], the tem can 

be either Tf under pulse amplitude modulation or shorter under pulse width modulation. A 

combination of driving current control and pulse width control, called hybrid modulation, may 

also be applied. In PM emissive displays [Figure 2-1(c)], LEDs emit light only when that row is 

scanned to, resulting in an ultrashort tem. Experientially, Peng et al. proposed a simplified equation 

to estimate MPRT of conventional LCD with continuous progressive emission pattern [Figure 

2-1(a)], which is a good representative of temporal delay [23]: 

 
2

2 0.8 .fMPRT T 
    (2-1) 

The magenta parallelograms in Figure 2-1 mark the image persistence of Frame k. 

Counting both spatial delay (0.8 tscan) and temporal delay (MPRT), timage of continuous progressive 

emission pattern is 

 
22

0.8

0.8 0.8 .

image scan

f em

t t MPRT

T t

 

  
   (2-2) 

Increasing frame rate (f = 1 / Tf) can effectively reduce timage. Whereas, the tradeoff is an 

increment of power consumption, data transmission rate and panel data input time. As a result, the 

frame rate of high resolution device is limited. For instance, Sony’s 98-inch 8K4K-resolution TV 

(XBR-98Z9G) supports a signal rate of up to 120 Hz at 2K1K resolution, while the maximum rate 

is 60 Hz at 4K2K resolution and 30 Hz at 8K4K resolution. 
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2.2.2 Simultaneous emission 

Simultaneous emission can dramatically reduce timage at low frame rate. As illustrated in 

Figure 2-2, the LEDs only emit light when data input process and pixel response are ready. 

Therefore, spatial delay no longer aggravates image persistence. This emission pattern can be 

realized by global dimming the LCD backlight or through circuitry adjustment in emissive displays. 

In order to reserve enough time for data input process and pixel response, tem is short and the duty 

ratio (DR = tem / Tf) is typically ≤ 10%. Under such a circumstance, the timage in simultaneous 

emission is 

0.8 .image emt MPRT t      (2-3) 

  

Figure 2-2 Simultaneous emission pattern for LCDs and emissive displays. 

Simultaneous emission enables submillisecond timage on emissive displays. For instance, 

timage = 0.9 ms in a 10%-DR 90-fps display. However, the story is different on high-resolution, 

large-size and high-luminance mLED-LCD panels. From tscan + τ + tem ≤ Tf, the competence 

between the three time consuming parts is stiff. First, longer data input time (tscan) is required when 

display resolution increases, especially on large panels where low-cost a-Si TFTs are employed. 

Second, τ is not an ignorable factor in mLED-LCDs. Third, the required instant luminance is 1 / 

DR times (e.g. 10 times for DR = 10%) higher than whole-frame-backlight-on displays. Such a 
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high luminance not only demands high current operation, but also shifts the LED working spot to 

low-efficiency region and exacerbates heat dissipation issues. Consequently, relatively high DR is 

preferred for high luminance. However, either of the two ways for increasing DR – increasing tem 

or decreasing Tf – leads to a decrease of the tscan + τ budget. Because of the abovementioned reasons, 

the application of simultaneous emission in LCD is mainly constrained in small-size and low-

luminance virtual reality panels [34]. 

2.2.3 Segmented progressive emission 

Segmented progressive emission is designed for local dimming LCDs, but also works for 

emissive displays. In this emission pattern, the panel is divided into several unit blocks. As an 

example, Figure 2-3 is an illustration of Nblock = 4 blocks. The data input process and pixel response 

are the same as continuous progressive emission [Figure 2-1(a)]. The difference is on the time 

window of LED emission. As shown in Figure 2-3, the blocks are illuminated sequentially. On 

each block, the backlight is turned on when the data input and pixel response have been finished. 

So the LC transition no longer impairs image quality. In this design, the constraint of tscan + τ + tem 

≤ Tf in simultaneous emission is broken. Instead, tscan = Tf is enabled for high-resolution and large-

size panels. And τ + tem ≤ Tf considerably loosens the budget on LC response time and improves 

DR for high-luminance displays. Furthermore, if only one block is illuminated during each time 

window (as illustrated in Figure 2-3), the number of driver ICs can be reduced to 1 / Nblock of the 

original amount, indicating a lower IC cost. The corresponding emission time is tem ≤ Tf / Nblock, so 

the instant luminance should be boosted to at least Nblock times of the original.  
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The major inadequateness of segmented progressive emission is the slow timage. As the 

magenta polygon marks in Figure 2-3, spatial delay causes image persistence in segmented 

progressive emission: 

0.8 0.8 .image scan ft t T       (2-4) 

For instance, to achieve 2-ms timage, in this emission pattern it needs 400-fps high frame rate 

operation, facing the same challenge as continuous progressive emission. 

 

Figure 2-3 Segmented progressive emission pattern without subframe image content 
correction. 

2.3 Subframe image content correction method 

2.3.1 Operation principles 

In order to significantly reduce timage, we propose a subframe image correction method for 

segmented progressive emission pattern. In the exemplary illustration in Figure 2-4, four different 

image contents k-1, k-2, k-3 and k-4 are delivered to the Nblock = 4 units in Frame k. Figure 2-5(a) 

shows the image content, where the panel is displaying a car moving from the left to the right of 

the screen. Since blocks #1 to #4 are turned on sequentially, the real car location at each 

illumination time is changing. In conventional designs with the emission pattern of Figure 2-3, 
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because the content is refreshed once per frame, only image content k-1 is displayed through the 

whole panel, as Figure 2-5(b) depicts. The content mismatch between Figure 2-5(a) and Figure 

2-5(b) results in motion blur. In our proposed method with the emission pattern of Figure 2-4, the 

image content at each block is corrected at subframe level, as Figure 2-5(c) illustrates. The 

persistence of each image content is reduced to 

0.8 0.8 .scan
image em

block

t
t t

N
     (2-5) 

 

Figure 2-4 Segmented progressive emission pattern with subframe image content correction. 

 

 

Figure 2-5 Display image content of a car moving from the left to the right of the screen. (a) 
Real-time car location on screen. (b) Displayed content under segmented progressive emission 
without subframe image correction. (c) Displayed content under segmented progressive 
emission with subframe image correction. 
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2.3.2 Subjective experiment validation 

In order to verify the effectiveness of our method, we conducted the following subjective 

experiments. In a darkroom, we displayed a moving object and a reference static object as shown 

in Figure 2-6. A DMD (digital micromirror device) projection display with τ << Tf was employed 

so that we can focus on the delay from emission pattern and exclude the influence of τ. The 

projected image has 1024×768 resolution, and was located at a viewing distance for human eye 

perception limit (60 pixels per degree). The moving speed of the top object was set to be 24° per 

second angularly. We displayed the video under segmented progressive emission pattern with 

subframe image content correction and 60-fps frame rate. Ten observers with normal or corrected 

normal vision were asked to pursuit the moving object and to judge the sharpness difference from 

the reference static object. Five-point image quality scale was used with half-point score accepted: 

grades [1~5] represent for [completely different / very different / different / slightly different / 

identical].  

 

Figure 2-6 Image content used in motion blur evaluation subjective experiment. 

The performance of different Nblock was evaluated and Figure 2-7 shows the average grades. 

Without image content correction (Nblock = 1), the average grade is 4: the sharpness of the moving 



14 

 

object is slightly different from the static reference. That image quality meets the minimum 

acceptable level because of the 60-fps frame rate, which has been optimized to and used in display 

industry for decades. However, advanced displays call for better performance. As shown in Figure 

2-7, as Nblock increases, observers gave higher scores on the perceived image quality, which means 

motion blur is effectively alleviated. When Nblock ≥ 3 (image content rate ≥ 180 fps, timage ≤ 4.4 ms), 

the perceived image quality grade is higher than 4.5, indicating that more than half of the observers 

did not notice motion blur. When Nblock reaches 6 (image content rate ≥ 360 fps, timage ≤ 2.2 ms), 

the grade is approaching 5: the sharpness of the moving object looks identical to the static reference.  

 

Figure 2-7 Perceived image quality of a 24°/s-moving object in a 60-fps display. The emission 
pattern is segmented progressive emission and different block numbers in subframe image 
correction were evaluated.  

Image-corrected segmented progressive emission pattern has some requirements. It needs 

local dimming backlight and higher image content rate than simultaneous emission. From Figure 

2-7, at least 180-fps video source is recommended. However, it does not demand such a high data 

transmission rate on the panel port. The high-frame-rate video source can be processed and 

compressed to low-frame-rate image content (image recombination from Figure 2-5(c)) before 
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loaded to the display panel so that the data transmission rate on hardware is not necessarily to be 

increased. 

In exchange, this design presents several advantages. Table 2-1 is a comparison of different 

emission patterns. We can see that image-corrected segmented progressive emission integrates the 

merits of all other designs. First, it exhibits the shortest image persistence time (= 0.8 tem) as 

simultaneous emission for motion blur suppression. Second, it provides the longest data input time 

(= Tf) as continuous progressive emission to release the burdens on electronics, which is especially 

important to high-resolution and large-size mLED-LCD panels. Third, it enables higher duty ratio 

than simultaneous emission with the same timage. Numerical examples are given in Table 2-2 to 

show the improvement from simultaneous emission to image-corrected segmented progressive 

emission. In Table 2-2, emission pattern #1 and #3 provide the same data input time and image 

persistence time, while 44% higher duty ratio (indicating higher luminance) can be obtained on 

pattern #3. Emission pattern #2 and #3 have the same duty ratio and image persistence time, while 

pattern #3 enables 83% longer data input time for effective signal update. In Table 2-2, we assumed 

very fast LC response time (τ = 1 ms) in calculation. The improvement from simultaneous emission 

(#1 and #2) to image-corrected segmented progressive emission (#3) would be bigger if slower 

LCs are adopted. 
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Table 2-1 Comparison of the specified emission patterns. 

Emission pattern Continuous progressive Simultaneous 
Segmented progressive 

Image uncorrected Image corrected 

Emission time Tf Tf – tscan – τ Tf / Nblock Tf / Nblock 

Image persistence time  
220.8 0.8f emT t   0.8 tem 0.8 Tf 0.8 tem 

Data input time Tf Tf – tem – τ Tf Tf 

Duty ratio 100% tem / Tf tem / Tf tem / Tf 

 

Table 2-2 Numerical examples of achieving timage = 2.2 ms in the specified emission patterns. Fast LC response time (τ = 1 ms) is 
assumed in calculation. 

Emission pattern 
Simultaneous 

3-block image-corrected 

segmented progressive 

#1 #2 #3 

Frame rate 83 fps 120 fps 120 fps 

Image content rate 83 Hz 120 Hz 360 Hz 

Emission time 2.8 ms 2.8 ms 2.8 ms 

Data input time 8.3 ms 4.6 ms 8.3 ms 

Duty ratio 23% 33% 33% 

Image persistence time 2.2 ms 2.2 ms 2.2 ms 
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2.4 Conclusion 

In this chapter, we analyzed the image persistence time in different display patterns 

considering both temporal delay and spatial delay. A new image-corrected segmented progressive 

emission method for mLED-LCD was proposed. Our design breaks the tradeoff between image 

persistence time, data input time and duty ratio in conventional emission patterns. These three 

parameters determine motion blur, display resolution/panel size and peak luminance, respectively. 

In subjective experiments, we proved that our method can significantly alleviate motion blur. We 

recommend at least 180-Hz/preferred 360-Hz image content rate to diminish motion blur. Our new 

method is designed for mLED-LCD, but also works for emissive displays. 
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CHAPTER 3 SUBMILLISECOND RESPONSE BLUE PHASE LIQUID 

CRYSTAL 

3.1 Introduction 

Fast LC response time is crucial for motion blur mitigation. In this chapter, we report a 

submillisecond polymer-stabilized blue phase liquid crystal (PS-BPLC) [36,37] material, which 

has been published in [38]. PS-BPLC is an attractive display technology for the merits of 

submillisecond response time, no need for surface alignment, optically isotropic dark state, and 

insensitive to the cell gap in an in-plane switching (IPS) cell [39]. However, it remains at the 

prototype stage [40,41] because of two major hurdles: 1) high operation voltage (Vp), which leads 

to high power consumption, and 2) slow capacitor charging in active addressing scheme, which 

limits the frame rate and resolution of displays. In order to reduce Vp, protruded electrodes [42,43] 

and large Kerr constant BPLC materials [44-46] have been practiced. Several BPLC materials with 

n > 0.18 and  > 100 have been developed for Kerr constant enhancement [47,48]. However, 

for such a huge  BPLC material, there are several concerns: 1) increased rotational viscosity (1), 

which leads to a slower response time (> 1 ms), and 2) longer capacitor charging time when 

addressed by TFTs (thin film transistors), which is aggravated as frame rate and resolution increase. 

To overcome the slow charging issue, bootstrapping driving, i.e. pre-charging method has been 

developed [49,50]. If the average dielectric constant (’) is smaller than 100, then the charging 

issue can still be managed. But the dilemma stays: lower  leads to increased Vp. Therefore, a 

delicate balance between operation voltage, response time, and charging time has to be taken into 

consideration. An ideal BPLC should possess following properties: fast charging time for high 
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resolution and high frame rate, high transmittance at 15 V for single-TFT driving, and 

submillisecond response time. 

In this chapter, we report a fast-response BPLC mixture, called JC-BP08. Its physical 

properties are listed as follows: ’  87 so that the TFT charging issue is still manageable, voltage 

holding ratio > 99.4% at 25°C once charged, and response time 0.83 ms at room temperature. 

Using a protruded electrode structure, our simulation results indicate that we can obtain 

transmittance ~ 74% at 15 V using JC-BP08. This is an important step towards single TFT (per 

pixel) addressing.  

3.2 Material characteristics 

In the past few years, three commercial BPLC mixtures have been well studied; they are 

PSBP-01 (JNC, Japan) [44,48,51], Merck BPLC [47], and HTG-135200 (HCCH, China) [52,53]. 

Among them, Merck’s mixture is only available to some specific customers. JNC’s PSBP-01 has 

a relatively large Kerr constant, which helps to lower the operation voltage. However, its decay 

time is around 1.6 ms, and is slower at low gray levels. Finally, the HCCH’s mixture is for 

experimental studies only, not intended for active matrix display applications because of its 

relatively low voltage holding ratio (VHR  80%) [53].  

Here, we prepared a new BPLC mixture: JC-BP08 (from JNC). The compositions and UV 

curing conditions are described as follows: JC-BP08 precursor contains 84 wt. % nematic LC host, 

4.8% chiral dopant, 10.8% monomers, and 0.4% photoinitiator. The dielectric anisotropy and 

birefringence of the LC host of JC-BP08 are ∆ε = 114 (at frequency 1 kHz and 25°C) and ∆n = 

0.161 (λ = 589 nm and 25°C), respectively. Before UV curing, the phase transition temperatures 
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are: N* 53.0°C BP during heating and BP 50.8°C N* during cooling, where N* stands for chiral 

nematic phase. After UV curing at BP-I, the physical properties of polymer-stabilized JC-BP08 

are: ε’ = 87 at frequency fAC = 60 Hz and 25°C, clearing temperature Tc = 75°C, and melting point 

Tm < -20°C.  

To characterize the electro-optic performance, we filled JC-BP08 into an IPS cell with no 

surface alignment layer. Because JC-BP01 has a similar ε’ value, we include it as benchmark for 

comparison. The IPS-8/12 cells we employed have ITO electrode width w = 8 μm, electrode gap 

g = 12 μm, and cell gap d = 7.3 μm. When heated to BP-I, the cells were cured under UV light (λ 

~ 365 nm, intensity 8 mW/cm2) for 15 min. For convenience, we call the two samples as PSBP-01 

and PSBP-08. Our experiment was conducted at room temperature unless otherwise mentioned. 

 

Figure 3-1 (a) VT curves at room temperature and (b) temperature dependent decay time of 
PSBP-01 and PSBP-08 at λ = 633 nm and frame rate = 240 fps. Dots are experimental data and 
lines are fitting curves. 

Figure 3-1 depicts the measured voltage dependent transmittance (VT) curves and 

temperature dependent decay time of PSBP-01 and PSBP-08, respectively. Here, the transmittance 

is normalized to that of two parallel polarizers. We also fit the experimental VT curves with the 
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extended Kerr effect model, in which the induced birefringence ∆nind is related to the electric field 

E as [54]: 

  2
1 exp / ,ind s sn n E E     

 
   (3-1) 

where ∆ns stands for the saturated birefringence and Es for the saturation electric field. As Figure 

3-1(a) depicts, Equation (3-1) fits the measured VT curves of PSBP-01 and PSBP-08 well by 

TechWiz (SANAYI System). Through fittings, we found ∆ns = 0.138 and Es = 6.0 V/μm for PSBP-

08, and ∆ns = 0.135 and Es = 4.7 V/μm for PSBP-01. Based on these parameters, we obtained Kerr 

constant K = 6.1 nm/V2 for PSBP-08, and K = 9.7 nm/V2 for PSBP-01. Our Kerr constant of PSBP-

01 is somewhat smaller than that reported in [44], because our measurement is at a higher 

temperature. As Figure 3-1 depicts, PSBP-01 shows a lower Vp than PSBP-08 because of its larger 

Kerr constant, but its response time is > 2× slower than that of PSBP-08 at room temperature. This 

difference amplifies in the low temperature region. The difference between PSBP-01 and PSBP-

08 mainly comes from the average elastic constant (k), which contributes to Kerr constant (K) and 

response time (τ) by the following equations [37,55]: 

 
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,
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n P
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 

 
     (3-2) 
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



     (3-3) 

where n, , P, and 1 represent the birefringence, dielectric anisotropy, pitch length, and 

rotational viscosity of the BPLC composite, respectively, and  is the wavelength. JC-BP01 has 

its advantage of large Kerr constant, so the low operation voltage makes it useful for general 

displays. However, to achieve a faster response time than JC-BP01, our JC-BP08 exhibits a larger 
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k, which helps to shorten the response time [Equation (3-3)] but its Kerr constant is somewhat 

compromised [Equation (3-2)]. The pitch length is also slightly adjusted from P = 412 nm for 

PSBP-01 to P = 376 nm for PSBP-08.  

3.2.1 Gray-to-gray response time 

PSBP-08 exhibits very fast gray-to-gray (GTG) response time. Table 3-1 lists the measured 

gray-to-gray (GTG) response time of PSBP-08 at room temperature without overdrive and 

undershoot voltages. The averaged GTG rise time is 0.9 ms and decay time is 1.0 ms. The slowest 

GTG response time (from gray level 1 to gray level 2) is 1.827 ms. Such a fast response time 

certainly helps diminish motion blur. 

Table 3-1 Measured response time of PSBP-08 between different grey levels (1-8). 

 Rise time (ms) 

D
ec

ay
 t

im
e 

(m
s)

 

 1 2 3 4 5 6 7 8 

1  1.827 1.775 1.490 1.476 1.330 1.129 0.560 

2 0.258  1.028 1.197 1.096 1.035 0.862 0.326 

3 0.317 0.879  0.935 1.024 1.202 0.988 0.357 

4 0.351 0.831 0.602  0.868 0.821 0.749 0.350 

5 0.415 0.798 1.103 1.393  0.723 0.683 0.324 

6 0.445 0.884 0.959 1.245 1.607  0.632 0.292 

7 0.546 1.003 1.124 1.274 1.231 1.183  0.246 

8 0.846 1.525 1.393 1.330 1.413 1.359 1.482  
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3.2.2 Wavelength and frequency effects 

For a given PSBP composite, ∆ns governs its optical response, e.g. transmittance, while Es 

determines its operation voltage. Both ∆ns and Es influence Kerr constant by [51] 

 2/ .s sK n E       (3-4) 

Equation (3-4) implies that to lower the operating voltage (i.e. larger Kerr constant), higher ∆ns, 

shorter wavelength and lower Es are preferred.  

Figure 3-2 depicts the wavelength effect of PSBP-08. In Figure 3-2(a), we fixed Es = 6.0 

V/μm at 240 fps and fitted the VT curves at the specified wavelengths. The obtained ∆ns values 

are plotted in Figure 3-2(b). We further fitted the ∆ns dispersion with following equation [56]: 

2 2

2 2

*
,

*
sn G

 

 
 


    (3-5) 

and obtained the proportionality constant G = 2.07 μm-2 and the mean resonance wavelength λ* = 

239 nm. From Equation (3-5), we find ∆ns = 0.146 at λ = 550 nm for PSBP-08.  

 

Figure 3-2 (a) Measured and fitted VT curves of PSBP-08 at the specified wavelengths, 240 fps 
and room temperature. Dots are measured data; lines are fitting curves with Equation (3-1) by 
fixing Es = 6.0 V/μm. (b) Dispersion of ∆ns for PSBP-08. Dots are results obtained from (a) and 
red line represents the fitting with Equation (3-5). 
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High frame rate helps to mitigate motion blur, but the tradeoff is increased electronic power 

consumption. Figure 3-3(a) depicts the frequency dependent VT curves. As the frequency (fAC) 

increases from 60 Hz to 2 kHz, Vp increases gradually. To fit each VT curve, we fixed ∆ns = 0.138 

(for λ = 633 nm) and obtained different Es values. Based on the ∆ns and Es values, we calculated 

the Kerr constant as plotted in Figure 3-3(b). Next, we fitted the experimental data with following 

extended Cole-Cole equation [51]: 

     
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Figure 3-3 (a) Measured frequency (fAC) dependent VT curves of PSBP-08 at λ = 633 nm and 
room temperature. (b) Frequency dependent Kerr constant of PSBP-08. Black dots are the 
extracted data from (a), while red line represents fitting with Equation (3-6). 

Through fittings, we find static Kerr constant Ks = 6.5 nm/V2, high frequency Kerr constant 

K = 0, Debye relaxation frequency fr = 1.2 kHz, and α = 0.13. For comparison, fr = 1.3 kHz for 

PSBP-01 [51]. Since PSBP-08 has a similar ε’ to PSBP-01, their fr values are also comparable. As 
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Figure 3-3(b) depicts, Kerr constant decreases gradually as the frequency increases. At fAC = 120 

Hz (frame rate 240 fps), the Kerr constant slightly decreases to 6.1 nm/V2.  

3.2.3 Charging issue for high dielectric constant BPLCs 

Fast capacitor charging time plays a key role for high frame rate and high-resolution 

display devices. In 2013, Haseba, et al. [48] used PSBP-06 to demonstrate that LC with a larger 

dielectric constant (ε’) needs a longer time to be fully charged. A higher ε’ LC implies to a larger 

capacitor, as a result, it requires a longer time to accumulate the electric charges. Similar to Kerr 

constant, the dielectric constant of BPLC declines as the driving frequency increases. A short 

(typically 20-μs) DC voltage from TFT contains some high frequency components. From Figure 

3-3(b), during such a short charging time, the corresponding ε’ value is very small. Since the 

following frame time is much longer than the charging time, the voltage-holding frequency is much 

lower than the charging frequency. At the beginning of open circuit, the working frequency drops 

quickly from the high charging frequency to the low voltage-holding frequency, thus ε’ and the 

capacitance increase instantly, resulting in a low charged-in voltage. Nematic LCs do not suffer 

such problem because their ε’ is small and insensitive to the driving frequency as long as fAC < 100 

kHz.  

Figure 3-4 is an illustration of the slow charging time and low voltage holding ratio issues 

of a BP LCD. In Figure 3-4(a), let us assume the applied voltage is V0 = 10 V and charging time tc 

= 16 s. Because the BPLC has a large capacitance, it requires much longer time to reach 10 V. 

With such a short charging time, the charged-in voltage Vi is about 4.2 V, which is much lower 

than V0. After a holding time of th = 4.2 ms [240 fps], the held voltage decreases to Vh. Therefore, 
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two parameters determine the electrical performance of a BP LCD: 1) charging time: it is related 

to ε’ and fr, which indicates how ε’ changes with frequency; 2) VHR defined as Vh / Vi: it represents 

how well the voltage is held in a given frame time. Our PSBP-08 has a moderate ε’, its charging 

time is about 250 s, which is still more than 10× longer than that of a conventional nematic LC. 

But once charged, its VHR reaches 99.4% at 25°C and 93.2% at 60°C. The high VHR is because 

JC-BP08 consists of mainly fluorinated multi-ring compounds [52]. Fluorinated liquid crystals 

exhibit a high resistivity, which leads to a large VHR [57], and have been widely used in TFT 

LCDs.  

 

Figure 3-4 (a) Schematic illustration of the charged-in voltage and voltage holding ratio. tc, th, 
V0, Vi and Vh stand for charging time, holding time, applied voltage, charged-in voltage and held 
voltage, respectively. (b) Charging time dependent Vi / V0, where dots are experimental data 
and lines are fitting curves according to Equations (3-7)-(3-9). 

In principle, we should compare the charging issues of our PSBP-08 with PSBP-01 directly. 

However, there are no such data available for PSBP-01. Instead, we found the experimental data 

of PSBP-06 reported in [48]. Figure 3-4(b) shows the measured Vi / V0 of PSBP-06 (red dots) and 

our measured PSBP-08 (black triangles). PSBP-06 has a very large ε’ (~ 200), so its required 
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charging time is about 1.5 ms. To understand the slow charging phenomenon, we propose 

following equations: 

 0 0/ 1 exp / ,i cV V t t      (3-7) 

 0 ' ,ACt b f      (3-8) 

1
,

2
AC

c

f
t

      (3-9) 

where tc is the charging time (a variable), t0 is a characteristic charging time, which is linearly 

proportional to ε’ by a constant b, and fAC is the driving frequency (= 0.5 × frame rate). First, we 

fit the red dots in Figure 3-4(b) with Equations (3-7)-(3-9), as the red line shows, and obtain b = 

1.704. The agreement between model and experiment is very good. Next, we use the same b value 

to fit our PSBP-08 data without any adjustable parameter. Results are shown by the black line. 

Again, the agreement is good, although we have only two data points. Therefore, our model is 

validated experimentally. As shown in Figure 3-4(b), PSBP-06 has a huge ε’, which is desirable 

for lowering the operation voltage, but the required charging time is 1.5 ms. By contrast, PSBP-

08 has a smaller ε’ so that its required charging time (~ 250 s) is shortened by 6×, which is easier 

to be addressed by the pre-charging method [49,50]. 

3.3 Device performance 

Although we have overcome the charging issues, the high driving voltage is PSBP-08’s 

Achilles heel. Our target is to lower the operation voltage to 15 V to enable single-TFT addressing, 

while keeping a reasonably high transmittance, say > 70%. In this Section, we perform device 

simulation using PSBP-08 in some reported protrusion structures.  
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3.3.1 Protrusion electrode for low driving voltage 

In 2009, Rao, et al. [42] proposed a protruded electrode structure for lowering the operation 

voltage. This approach is proven to be quite effective. Several groups have fabricated such 

structures [40,41,58], especially in 2015 AUO demonstrated such protrusion electrodes in a 10” 

BPLC prototype [41]. The peak transmittance is over 75%, but the operation voltage is 32 V so 

that two TFTs per pixel are required. High Vp increases the power consumption while two TFTs 

reduce the aperture ratio and optical efficiency.  

For the protrusion structure, fabrication technique limits the best performance that can be 

achieved. As Figure 3-5(a) depicts, to lower Vp, we could decrease the protrusion gap (g) to 

increase the electric field intensity between two protrusions, or increase protrusion height (h) for 

the incoming light to accumulate more phase retardation. Nevertheless, narrower gap demands a 

smaller protrusion width (w) to keep high transmittance, since the area above the protrusion is a 

dead zone. Under such a condition, tall and thin protrusion is favored, but of course, they are more 

challenging to fabricate. Several other electrode structures have been proposed, but the fabrication 

is a limiting factor in practice [59-61]. In 2012, Yamamoto, et al. proposed and fabricated a 

triangular electrode structure (Figure 3-5(a)) to improve contrast ratio [62,63], whose protrusion 

height is h = 2.14 μm and width is w = 1.32 μm.  
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Figure 3-5 (a) The triangular electrode structure used in simulation, where h = 2.14 μm, w = 
1.32 μm, cell gap d = 4 μm, and the ITO tails beside the protrusion are kept for applying 
voltage. (b) Simulated VT curves of PSBP-08 (λ = 550 nm, frame rate = 240 fps) using the 
triangular electrode structure. The black and red lines refer to using the original protrusion gap 
g = 2.68 μm and using our optimized protrusion gap g = 1.5 μm, respectively. (c) Viewing angle 
dependence of gamma curves for film-compensated two-domain triangular electrode structure 
along the most severe gamma shift direction (φ = 230°). The right picture shows the two-
domain structure configuration. Red and orange denote common and pixel electrodes, 
respectively. 

3.3.2 Performance of PSBP-08 on protruded electrodes 

Here, we study the performance of our PSBP-08 using the protruded triangular electrodes. 

In Figure 3-5(a), a ridge protrusion is deposited on the bottom substrate, then ITO stripes are 



30 

 

sputtered onto the ridge protrusion. Except for the protrusion gap, the parameters used in our 

simulation are kept the same as those prototypes reported in [62,63], so that the fabrication process 

should also be the same: h = 2.14 μm, w = 1.32 μm, cell gap d = 4 μm; the ITO tails beside the 

protrusion are for applying voltage. The black line in Figure 3-5(a) shows the simulated VT curve 

using the experimental protrusion gap g = 2.68 μm. The peak transmittance is ~ 82% at 22 V. To 

lower Vp to 15 V, we reduce the protrusion gap to g = 1.5 μm, which is still comparable to the 

dimension of protrusion width w = 1.32 μm. As the red line shows in Figure 3-5(b), we can achieve 

74% transmittance at 15 V. Thus, PSBP-08 is a promising candidate for practical applications. 

For display applications, gamma shift is another important parameter. The well-known 

example is multi-domain vertical alignment for LCD TVs. In order to suppress gamma shift, 12 

domains are often employed. As a result, the transmittance is greatly reduced because the domain 

walls block the light.  

Here, we investigate the gamma shift of BP LCDs. It has been reported that a single-domain 

BPLC exhibits greyscale inversion, and to suppress grayscale inversion and widen viewing angle, 

two-domain structure and biaxial compensation film are needed [64]. We calculated the gray level 

(GL, 0-255) from transmittance (T) by T = (GL / 255)2.2. The gamma curves along the most severe 

gamma shift direction (φ = 230°) are plotted in Figure 3-5(c). We find the off-axis image distortion 

index D (θ, φ) = 0.135. From previous studies [65,66], as long as D < 0.2 the gamma shift is 

unnoticeable to the human eye. Therefore, for BP LCDs we only need two domains to achieve 

wide-view and distortion-free off-axis images. By merely using two domains, the effective 

transmittance should remain high. Moreover, since we are using IPS structure, which is insensitive 

to the cell gap, the BP LCD should work well for touch panels. 
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3.4 Conclusion  

Our new PSBP-08 exhibits following outstanding features: 1) Its fast response time helps 

mitigate motion blur. The average and slowest GTG response time are respectively < 1 ms and < 

2 ms. 2) Its VHR is adequate to support active matrix operation. 3) Its blue phase temperature range 

(from -20°C to 75°C) is adequate for indoor applications. 4) Its average dielectric constant is 87, 

which is still below the upper limit for bootstrapping driving. Thus, it facilitates the signal capacity 

charging and reduces the data input time. 5) Using the triangular electrode structure, PSBP-08 can 

achieve 74% transmittance at 15 V, which enables single-TFT driving. 6) With two-domain 

structure, our BP LCD offers indistinguishable gamma shift and wide viewing angle. A linear 

relationship between charging time and ε’ is proposed and validated by experiment. 
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CHAPTER 4 SUBMILLISECOND NEMATIC LIQUID CRYSTALS 

4.1 Introduction 

In this chapter, we report new nematic LC materials with submillisecond response time, 

which has been published in [67]. Liquid-Crystal-on-Silicon (LCoS) is a competitive candidate for 

augmented reality (AR) head-mounted displays [68-71] for its attractive features of high 

luminance (> 40 000 cd/m2) [69], high resolution density (> 4000 ppi) [70], high fill factor (> 

90%), low operation voltage (< 6 V) and compact size (< 1.5 inch). It can realize both phase 

modulation for holographic displays [72,73] and amplitude modulation for image projections [74-

76]. For the phase modulation, a minimum 2π-phase change is required. Phase-only LCoS is 

receiving increasing attention for the ability of encoding high-quality 3D image information. For 

the amplitude modulation, 1 phase retardation and high contrast ratio are critically needed, 

making reflective 90° mixed-mode twist nematic (MTN) and vertical alignment (VA) LCoS panels 

common choices. Most commercially available LCD AR devices are based on MTN LCoS panels, 

such as Google Glass, Microsoft HoloLens and Magic Leap One. As a reflective device, LCoS can 

be combined with either a conventional light source or a mLED/μLED local dimming backlight 

for contrast ratio enhancement.  

As discussed in Chapter 2, fast pixel response time is highly desirable for motion blur 

suppression. Polymer network LCs [77], polymer-stabilized short-pitch cholesteric LCs [78] and 

ferroelectric LC [79] can offer submillisecond response time. But the first two polymer-stabilized 

approaches need a high voltage that exceeds the sustainability of LCoS backplane. On the other 

hand, due to the bi-stable behavior of ferroelectric LC, digital driving is required for high-quality 
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image reproduction, which in turn raises power consumption. In comparison, nematic LC can 

provide superior image quality with low operation voltage, whose drawback is relatively slow 

response time (5 ~ 10 ms). In order to acquire fast response time, one promising strategy is to 

employ high birefringence (∆n > 0.25) LC with thin cell gap. Whereas, high ∆n LCs are vulnerable 

to high melting temperature (terphenyl type [80]) or the UV stability is compromised (NCS-tolane 

type [81,82]). Therefore, the development of high ∆n LC materials with low viscosity, modest 

dielectric anisotropy and reasonably high resistivity (>1012 Ω·cm) is urgently needed. 

In this chapter, we report three nematic LC mixtures optimized for LCoS. When used in a 

reflective 90° MTN cell for amplitude modulation, their high birefringence (Δn ~ 0.25 at 25°C, 

550 nm) and low rotational viscosity (γ1 ~ 130 mPa·s) jointly contribute to submillisecond response 

time (0.90 ms). Their relatively large dielectric anisotropy (∆ε > 6.6) helps to lower the operation 

voltage. At 5 V, high contrast ratio (2097:1) is experimentally obtained. 

4.2 Material characteristics 

We use LC-1, LC-2 and LC-3 to denote the three new LC mixtures, developed by DIC 

Corporation. Their physical properties were characterized at temperature TLC = 25°C and results 

are summarized in Table 4-1. We measured the melting temperature (Tm) and clearing temperature 

(Tc) by Differential Scanning Calorimetry (DSC, TA instruments Q100). The wide nematic range 

(< -35°C ~ 85°C) satisfies the requirement for most AR applications. The dielectric constants were 

measured with a multi-frequency LCR meter HP-4274. The reasonably large ∆ε contributes to a 

low operation voltage, which is desirable for head-mounted display devices. The rotational 

viscosity γ1 and [splay, twist, bend] elastic constants [K11, K22, K33] were measured through 
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transient current method by autronic-MELCHRS LCCS107. The low viscosity (γ1 ~ 130 mPa·s) 

helps reduce the response time effectively. For active matrix displays, the LC resistivity should be 

higher than 1013
 Ω·cm, while for LCoS it can be reduced to 1012

 Ω·cm because of the higher frame 

rate. The resistivity of our three LC mixtures satisfies this requirement. 

Table 4-1 Measured physical properties of LC-1, LC-2, and LC-3 at 25°C. 

LC mixture LC-1 LC-2 LC-3 

Tc (°C) 86.5 84.9 85.7 

Tm (°C) < -40 -35.4 < -40 

∆n @550 nm 0.251 0.247 0.25 

∆ε @1 kHz 6.68 9.1 6.75 

εꓕ @1 kHz 3.5 3.83 3.41 

γ1 (mPa·s) 133 130 123 

K11 (pN) 12.1 11.7 12.2 

K22 (pN) 7.6 6.8 7.4 

K33 (pN) 15.4 14.4 14.6 

1 / K11 (ms/µm2) 11.0 11.1 10.1 

Resistivity (Ω·cm) 1.6 ×1012 7.0 ×1011 8.8 ×1011 

4.2.1 Birefringence 

Birefringence determines the cell gap, which in turn affects the response time. To measure 

n, we filled each LC mixture into a homogeneous cell with cell gap d = 5 µm. The pretilt angle 

of the rubbed polyimide alignment layers is about 3°. We sandwiched each cell between crossed 

polarizers and activated it with a 1-kHz square-wave AC voltage. The birefringence was calculated 
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from the measured phase retardation [84]. Figure 4-1(a) depicts the temperature dependent 

birefringence at λ = 632.8 nm (He-Ne laser). The sample temperature was controlled by a Linkam 

heating stage through a temperature programmer TMS94. The extrapolated birefringence Δn0 at 

temperature TLC = 0 K and the exponent β were obtained by fitting experimental data with equation 

[85]: 

 0 0 1 / .LC cn n S n T T


         (4-1) 

To be noticed, in Equation (4-1), TLC and Tc should be in unit Kelvin. The fitting results are listed 

in Table 4-2. 

 

Figure 4-1 (a) Temperature dependent birefringence at λ = 633 nm, fAC = 1 kHz. (b) Dispersion of 
birefringence at fAC = 1 kHz, TLC = 40°C. Dots are measured data; lines in (a) and (b) are fitting 
curves with Equation (4-1) and Equation (4-2), respectively. 

For a working LCoS device, its operating temperature is about 40°C due to the thermal 

effects of backplane and the light source [86]. Therefore, we focus our studies at TLC = 40°C. To 

measure the wavelength dispersion, in experiment we used a He-Ne laser (λ = 632.8 nm) and a 

tunable Argon ion laser (λ = 457 nm, 488 nm and 514 nm). Results are plotted in Figure 4-1(b). 

The single-band birefringence dispersion equation [56] was used for fitting: 
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where G is a proportionality constant and λ* is the mean resonance wavelength. At λ = 633 nm 

and TLC = 40°C, the Δn of [LC-1, LC-2, LC-3] is [0.2233, 0.2213, 0.2207], respectively. The 

obtained G & * values are also listed in Table 4-2.  

Table 4-2 Fitting parameters obtained through Equations (4-1)-(4-3). 

LC mixture Δn0 β 
G @40°C 

(µm-2) 

λ* @40°C 

(µm) 

A 

(ms/µm2) 

Ea 

(meV) 

LC-1 0.318 0.167 2.96 0.251 3.00×10-5 315.8 

LC-2 0.334 0.197 3.32 0.239 5.36×10-6 355.1 

LC-3 0.338 0.202 3.05 0.247 1.80×10-6 377.4 

4.2.2 Visco-elastic coefficient 

We also measured the transient decay curves of these LC mixtures and obtained the 

temperature dependent visco-elastic coefficient γ1 / K11, as the dots presented in Figure 4-2. The 

solid lines represent fittings with following relation [87]:  

 

 
1

11

exp /
.

1 /

a B LC

LC c

E k T
A

K T T






   (4-3) 

Here, A, Ea, and kB stand for the proportionality constant, Boltzmann constant, and activation 

energy, respectively. The fitting parameters are also included in Table 4-2. From Figure 4-2 and 

Equation (4-3), we can see that γ1 / K11 decreases dramatically as the temperature increases. At TLC 

= 40°C, the γ1 / K11 of [LC-1, LC-2, LC-3] is [5.8, 6.0, 5.15] ms/µm2, respectively.  
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Figure 4-2 Temperature dependent visco-elastic coefficient at  = 633 nm and fAC = 1 kHz. Dots 
are measured data and lines are fitting curves with Equation (4-3). 

4.2.3 Photostability 

During the fabrication process, an LCoS panel is usually exposed to UV light in order to 

seal the filling hole. Such a UV exposure could damage the LC mixture or the alignment layer, 

depending on the photostability of employed LC and alignment materials. If an LCoS is using a 

low birefringence LC and inorganic alignment layers, such as silicon-dioxide (SiO2), then the 

photostability is not a concern [88]. However, to increase birefringence while keeping a low 

viscosity, a small percentage (5 ~ 10 wt.%) of tolane compounds is often added to the mixtures, 

which is sensitive to UV light. 

To investigate photostability, we chose LC-1 as an example for this study because it has 

the widest nematic range and highest resistivity among the three samples listed in Table 4-1. In 

experiment, we injected LC-1 into two 9.3-µm-thick homogeneous cells with SiO2 alignment layer. 

We measured the birefringence and visco-elastic coefficient of the samples after UV exposure and 

recorded the changes in Figure 4-3. Figure 4-3(a) depicts the measured photo-stability of LC-1 at 

 = 365 nm. As the UV dosage increases, n decreases and γ1 / K11 increases slightly. Compared 
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to the initial value, Δn decreases 4.1% whereas γ1 / K11 increases 4.3% after 20 J/cm2 of UV 

exposure and then saturates. In LCD industry, to seal the LC filling hole, a  = 365 nm UV light 

with dosage of ~10 J/cm2 is commonly used. This indicates that LC-1 is relatively UV-robust, 

considering its high birefringence and low visco-elastic constant. However, to prevent photo-

degradation, we still recommend blocking the LC area during UV exposure. An alternative choice 

is to use a longer wavelength UV, say  = 385 nm [89]. From the measured photo-stability results 

in Figure 4-3(b), even after 120-J/cm2 of UV exposure at  = 385 nm, its Δn only drops by 3.1% 

as compared to the initial value, while γ1 / K11 fluctuates within 1.6% variation. 

 

Figure 4-3 Measured photo-stability of LC-1 with an UV LED at (a) 365 nm and (b) 385 nm. 

Probing laser beam:  = 633 nm. Measurement temperature: 40°C. Black rectangles denote 
birefringence and blue circles denote visco-elastic constant. 

4.3 2π phase modulation in homogeneous-aligned cells 

4.3.1 Voltage dependent phase change (V-Φ) curves 

To simulate the performance in a real LCoS device, we filled each LC mixture into a 
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doubled optical path. Using the physical parameters measured at λ = 633 nm and TLC = 40°C, we 

simulated the voltage dependent transmittance (V-T) curves by a commercial LCD simulator 

DIMOS 2.0. Figure 4-4 compares the V-Φ curves converted from the measured V-T curves (dots) 

and the simulated V-T curves (lines). The simulation agrees well with experiment.  

 
Figure 4-4 Measured and simulated V-Φ curves at TLC = 40°C, λ = 633 nm and fAC = 1 kHz. Dots 
are measured data in transmissive homogenous cells with d = 3.4 μm; lines are simulated 
curves in reflective homogenous cells with d = 1.7 μm. 

4.3.2 Response time 

The response time (τ) of an LC cell is proportional to d2. Thus, the response time of our 

3.4-µm transmissive cell is expected to be 4× longer than that of a 1.7-µm-thick reflective cell. 

Table 4-3 compares the measured and simulated response times. For each LC mixture, the first 

row represents the measured result of the transmissive cell; the second row is the extrapolated 

result for the reflective LCoS, where the cell gap is half and the response time is one-fourth of the 

transmissive cell, and the third row is the simulated result of a reflective cell. Good agreement is 

achieved between experiment and simulation. 
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Table 4-3 Response time of measured, extrapolated and simulated results at TLC = 40°C, λ = 633 nm and fAC = 1 kHz. 

LC mixture Type 
d 

(µm) 

V2π 

(V) 

τon 

(ms) 

τoff 

(ms) 

τon + τoff 

(ms) 

 Measured Transmissive 3.40 5.38 1.23 7.82 9.05 

LC-1 Extrapolated 
Reflective 

1.70 5.38 0.31 1.95 2.26 

 Simulated 1.66 5.38 0.37 2.21 2.58 

 Measured Transmissive 3.44 4.57 1.44 8.15 9.59 

LC-2 Extrapolated 
Reflective 

1.72 4.57 0.36 2.04 2.40 

 Simulated 1.67 4.57 0.40 2.34 2.74 

 Measured Transmissive 3.39 5.78 0.96 6.65 7.61 

LC-3 Extrapolated 
Reflective 

1.69 5.78 0.24 1.66 1.90 

 Simulated 1.65 5.78 0.28 2.00 2.28 
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Table 4-4 Selected nine phase levels between 0 and 2π, and the corresponding operation voltage of LC-1. The listed data are 
obtained from Figure 4-4. 

Phase level 1 2 3 4 5 6 7 8 9 

Phase change (π) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 

Voltage (V) 0 1.52 1.72 1.95 2.21 2.46 2.77 3.42 5.38 

 
Table 4-5 Measured PTP response time of LC-1 in a transmissive homogenous cell with d = 3.4 μm. Note: the LCoS response time 
with d = 1.7 μm is 4× faster than the data shown here. 

 Rise time (ms) 

D
ec

ay
 t

im
e 

(m
s)

 

 1 2 3 4 5 6 7 8 9 

1 * 44.47 25.83 17.02 12.29 9.16 6.78 3.55 1.23 

2 8.27 * 17.34 13.07 10.06 7.77 5.56 3.01 1.03 

3 7.75 21.36 * 11.76 9.12 6.81 4.60 2.58 0.91 

4 7.82 20.31 14.40 * 8.07 6.05 3.61 2.32 0.82 

5 7.64 17.77 13.57 9.18 * 5.52 3.39 2.15 0.79 

6 7.57 13.97 11.95 8.51 6.68 * 3.35 2.04 0.78 

7 7.56 14.90 10.89 7.82 6.29 4.37 * 2.10 0.80 

8 7.57 15.24 10.39 7.73 6.33 4.89 4.04 * 0.77 

9 7.82 14.88 10.15 7.83 6.56 4.76 3.92 2.10 * 
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In an AR device, the LCoS panel is expected to tune the phase change continuously from 

0 to 2π. Here, we selected nine phase levels to represent the full phase tuning range. By measuring 

the response time between each two levels, we can obtain a phase-to-phase (PTP) response time 

chart. Still using LC-1 as the example, Table 4-4 lists the representative phase levels and the 

corresponding operation voltage of the 3.4-μm-thick homogenous cell, while Table 4-5 

summarizes the measured PTP response time without overdrive/undershoot circuitry. The 

measured average PTP response time is 8.32 ms. Therefore, for V2π = 5.38 V, the extrapolated PTP 

response time for a reflective LCoS panel is 2.08 ms, which enables 240-fps refresh rate for field- 

sequential-color (FSC) displays and color breakup mitigation [90,91].  

4.3.3 New driving method on a full-color phase-only SLM device 

After validating the reliability of our simulation, we simulated the V-Φ curves of LC-1 for 

RGB colors. From Figure 4-1(b) and Equation (4-2), the Δn at TLC = 40°C and λ = [448 nm, 524 

nm, 638 nm] are [0.2739, 0.2437, 0.2220]. These values are the wavelengths of three laser diodes 

employed in Microsoft’s LCoS-based AR prototypes [72]. Either for color filter-type or for FSC-

type LCoS, the cell gap for RGB colors should be the same since only one panel is utilized. In 

simulation, the cell gap was set at d = 1.716 µm to ensure V2π ≤ 5 V works for all three colors. As 

demonstrated in Figure 4-5, the red color with the longest λ and the lowest Δn has the highest V2π 

= 5 V. For green and blue colors, more than 2π phase change can be obtained within 5 V. Thus, 

we can choose a preferred 2π phase range to use for the green and blue colors. Here we denote V1 

and V2 as the initial and final voltage of the selected 2π phase range. Here, V2 is higher than Vth 
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(threshold voltage), but V1 can be higher or lower than Vth. Under such condition, The LC rise time 

and decay time depend on the V1 and V2 as follows [92]: 
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where 0 (= 1d
2 / K11

2) is the free relaxation time, i.e. V1 = 0. From Equations (4-4) and (4-5), 

the response time near Vth is slow. If we set V1 = 0 for the blue wavelength, then its V2 is close to 

Vth, resulting in slow rise time, as Table 4-6 shows.  

 

 
Figure 4-5 Simulated V-Φ curves of LC-1 for RGB colors at TLC = 40°C in a reflective homogenous 
cell with d = 1.716 μm. Lines are V-Φ curves; dots mark the lower and upper limit of the 2π 
phase change range with V2 = 5 V. 

To overcome the above problem, we propose a new driving method to accelerate the 

response time of an LCoS panel intended for full-color operation. As demonstrated in Table 4-6, 

we manually set the same V2 for all of the RGB colors, say V2 = 5 V. The dots in Figure 4-5 mark 

the V1 and V2 in this design. For green and blue colors, V1 > Vth is achieved. The simulated τon + 

τoff in Table 4-6 shows the improvement over the driving method starting from V1 = 0.  

  

0 2 4 6 8 10
0

1

2

3

4

P
h
a
s
e
 c

h
a
n
g
e
 (

)

Voltage (V)

 448 nm

 524 nm

 638 nm

(a)



44 

 

Table 4-6 Simulated response time of LC-1 at TLC = 40°C in a reflective homogenous cell with d = 
1.716 μm. 

λ (nm) Δn V1 (V) V2 (V) τon (ms) τoff (ms) τon + τoff (ms) 

448 0.2739 
(  0.00  ) 2.34 3.62 2.41 6.03  ) 

2.07 5.00 0.34 2.76 3.10 

524 0.2437 
(  0.00  ) 2.86 2.18 2.45 4.63  ) 

1.78 5.00 0.38 3.43 3.81 

638 0.2220 0.00 5.00 0.51 2.48 2.99 

 

A more dramatic improvement can be found in PTP response time because we intentionally 

shift V1 and V2 away from Vth. The slow PTP response time in the vicinities of Vth is replaced by 

the fast-response components at high voltage. Table 4-4 and Table 4-5 illustrate this concept. Here, 

Vth = 1.34 V is between phase level 1 and phase level 2. To get 1π phase change, we can either 

choose phase levels 1-5 or phase levels 5-9. Covering Vth, the average PTP response time between 

phase levels 1-5, e.g. the average value in the left top bolded rectangle in Table 4-5, is as slow as 

14.86 ms. While for phase levels 5-9 above Vth (the right bottom bolded rectangle in Table 4-5), 

the average value is 3.58 ms, which is more than 4× faster than that of phase levels 1-5. For 

homogeneous-aligned cells, the average PTP response time is comparable with the sum of rise 

time and decay time. Table 4-5 confirms this phenomenon, where the average PTP response time 

8.32 ms is comparable with τon + τoff = 9.05 ms. Using our new driving method, the response time 

(τon + τoff) of all three primary colors is less than 4 ms, indicating < 4 ms average PTP response 

time for RGB colors. This enables 240-fps operation though a few slow-response phase levels are 

compromised. 
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4.4 Amplitude modulation with a 90° MTN cell 

4.4.1 Voltage dependent transmittance (V-T) curve 

To explore the performance of our new LC mixtures in projection displays, we fabricated 

a 90° MTN cell and filled LC-1 into it. A mirror was placed behind the cell to generate reflective 

mode. A polarizing beam splitter was employed functioning as two crossed polarizers. Again, we 

measured the V-T curve at TLC = 40°C, λ = 633 nm and fAC = 1 kHz. As depicted in Figure 4-6, the 

measured contrast ratio is 2097:1 at 5 V. The cell gap of the fabricated reflective 90° MTN cell 

was d = 1.32 µm, which is acceptable for mass production. If we control dΔn ~ 240 nm, then the 

peak transmittance should be 88% [74]. 
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Figure 4-6 Measured VT curve in a reflective 90° MTN cell with d = 1.32 μm at TLC = 40°C, λ = 
633 nm and fAC = 1 kHz. Dots mark the gray levels in Table 4-7. 

4.4.2 Response time 

As a result of the thin cell gap, submillisecond response time was achieved on this MTN 

cell. For 5-V operation, the [rise, decay] time is [0.136, 0.698] ms. The measured gray-to-gray 

(GTG) response time is summarized in Table 4-7. The gray level (GL, 0-255) was calculated from 
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transmittance (T) by T = (GL / 255)2.2. From Table 4-7 we can see, 0.90-ms average GTG response 

time is achieved without overdrive/undershoot circuitry. Except for one slowest GTG response 

time (2.40 ms from GL 255 to GL 192), all other GTG response time are less than 2 ms. 

Table 4-7 Measured GTG response time of LC-1 in a 90° MTN cell with d = 1.32 μm. 

 Rise time (ms) 

D
ec

ay
 t

im
e 

(m
s)

 

GL 255 192 128 64 0 

255 * 2.401 1.363 0.648 0.136 

192 0.781 * 1.339 0.517 0.110 

128 0.762 1.916 * 0.493 0.123 

64 0.731 1.743 1.078 * 0.260 

0 0.698 1.619 0.825 0.476 * 

4.5 Conclusion  

We have developed three practical LC mixtures for LCoS-based augmented reality displays. 

The mixtures exhibit high birefringence to enable thin cell gap for fast response time, modest 

dielectric anisotropy for 5-V operation voltage, acceptable resistivity and UV stability, and wide 

nematic range. In experiment, these mixtures enable 2-ms response time in phase-only LCoS and 

submillisecond response time in MTN LCoS amplitude modulators, which is highly desirable for 

motion blur alleviation. Widespread applications of these mixtures for the emerging augmented 

reality displays are foreseeable. 
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CHAPTER 5 HIGH CONTRAST RATIO 

5.1 Introduction 

High dynamic range (HDR) displays require high peak luminance, uncompromising dark 

state and high contrast ratio [24-26]. This chapter concentrates on high contrast ratio (CR), and the 

content has been published in [19,21]. While emissive displays intrinsically exhibit high contrast 

ratio in darkroom, for conventional LCDs it is limited to 1000:1 ~ 5000:1 due to non-uniform LC 

alignment, scattering of the color filters, and diffraction from the pixelated electrodes. To boost 

contrast ratio, local dimming with spatially segmented backlight unit is an effective approach 

[21,27-30]. Each segment, the so-called local dimming zone, is controlled independently. With 

10-bit backlight modulation, a high CR ~ 1 000 000:1 has been achieved [93].  

However, challenges remain in conventional local dimming LCDs. The first challenge is 

in panel thickness. Conventional edge-lit LCDs feature thin profile, but the light guide plate is 

relatively thick implementing high-luminance large-area LEDs. Moreover, the local dimming 

performance in edge-lit LCDs is relatively limited [94]. On the other hand, although conventional 

local dimming direct-lit LCDs can provide better contrast ratio [95], the small amount of LEDs 

requires a long light propagation distance (i.e. thicker profile) for good backlight uniformity. In 

comparison, the small chip size and large number of mLEDs facilitate the light spreading in direct-

lit LCDs so that it can effectively reduce panel thickness.  

The second challenge of local dimming LCD is the annoying halo effect and clipping effect 

[29]. Halo effect is the light leakage from bright objects to adjacent dark areas. Clipping effect 

denotes the insufficient luminance in a local dimming zone when adjacent zones are dimmed. 
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Figure 5-1 schematically shows these two effects. The center of the local dimming zones are xzone 

= 0, ±1, ±2, … with interval Δxzone = 1. In Figure 5-1, only the center zone at xzone = 0 is at peak 

luminance while the surrounding zones are dimmed. Ideally, the luminance of each zone should 

be uniform and independently controlled, as Figure 5-1(a) shows. However, in practice, the 

intensity of each local dimming zone is contributed by not only the aligned light source but also 

the light leakage from adjacent zones, as Figure 5-1(b) depicts. As a result, the intensity in the 

center zone is “clipped” to a lower level (purple area), and the light leaks to adjacent zones forming 

“halo” (yellow area). Afterward, a LC panel modulates the light from the backlight unit (red lines) 

to get finer details (blue lines). While the target light profile is plotted in Figure 5-1(c), the 

displayed image quality is degraded as Figure 5-1(d) shows. In order to suppress these two effects, 

a variety of local dimming algorisms have been developed from the basic “maximum”, “average” 

methods, to the complex point spreading function (PSF) integrations [27,28]. In 2013, Burini et al. 

compared different algorisms and conducted optimization to find the best tradeoff point between 

halo and clipping effects with power constraint [96]. From the aspect of hardware, an infinitely 

high LC CR or pixel-level dimming could eliminate these two effects. Practically, increasing the 

number of local dimming zones could reduce the dark area affected by halo effect, e.g. the yellow 

area in Figure 5-1(b); a higher LC CR can effectively suppress the halo effect in the bright zones, 

e.g. the little light leakage in the central zone as indicated by the yellow area in Figure 5-1(d). 

However, the increasing zone number will lead to higher panel cost, and the improvement of LC 

CR is limited. “How many zones are required?” That is a question bothering panel manufacturers. 

In parallel, halo effect and clipping effect can be mitigated by reducing zone crosstalk. As the light 

is better confined in each designated local dimming zone, the luminance in each zone is less 
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affected by adjacent areas. Whereas, strict local light confinement would compromise the spatial 

uniformity of the backlight.  

 

Figure 5-1 Schematic show of halo effect and clipping effect in local dimming LCDs: (a) ideal 
local dimming intensity profile; (b) practically obtainable local dimming intensity profiles (c) 
target intensity profile after LCD modulation; (d) practically obtainable intensity profile with 
halo effect and clipping effect. 

In this chapter, we develop a simplified model for mLED-LCD system. After validating 

our model with experimental measurements, we use this model to optimize mLED-LCD system 

for halo effect and clipping effect suppression. We demonstrate how to design a mLED-LCD panel 

with unnoticeable halo effect and clipping effect. Quantitatively, we provide the required number 

of local dimming zones for given LC CRs. We show how the light profile of each local dimming 

zone affect the final display performance. 
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5.2 Device modeling 

5.2.1 Modeling of mini-LED backlit LCD system 

A schematic of mLED-LCD system is shown in Figure 5-2. Light is emitted from mLED 

chips. A diffuser is put above the mLED chips to spread the light for good spatial uniformity. The 

distance between mLED, diffuser and LC panel, as well as the diffuser scattering strength need to 

be optimized so that the outgoing light is spatially uniform before entering the LC layer. Above 

the diffuser is a LC panel. The gray level of each LC pixel is controlled by a thin-film-transistor 

(TFT), and each color filter only transmits the designated color. Finally, a full-color image is 

generated. In our simulation, we model the light propagation from mLED backlight to LCD panel 

on the basis of PSF theory [96]. Without losing generality, we assume all the mLED chips are in 

square shape and have the same Lambertian angular emission pattern. For simplicity, we used 

Gaussian spatial distribution and Lambertian angular profile to describe the output light from 

diffuser. In order to validate our model, we compared our simulation results with the experimental 

data reported in [93]. On the four investigated test patterns, the dynamic contrast ratio values agree 

reasonably well except for variations at detector noise level [21].  

 
Figure 5-2 Schematic diagram of mini-LED backlit LCD. 
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5.2.2 Display performance evaluation metric 

After validating the simulation model, we further investigate in the relationship between 

device structure and the final HDR display performance, especially the halo effect and clipping 

effect. The light modulation process is illustrated in Figure 5-3, where the displayed image is a 

candle. Here, the backlight consists of 12×24 local dimming zones and each zone contains 6×6 

mLEDs in order to achieve a desired luminance. According to the image content, the mLEDs in 

each dimming zone are pre-determined to show different gray levels, as Figure 5-3(a) depicts. 

After passing through the diffuser, the outgoing light spreads out in each local dimming zone 

before reaching the LC panel [Figure 5-3(b)]. And the LC panel generates a full-color image as 

Figure 5-3(c) show.  

 

Figure 5-3 Light modulation of mLED-LCD: (a) mLED backlight modulation; (b) luminance 
distribution of the light incident on the LC layer, and (c) displayed image after LC panel 
modulation. 

In order to quantitatively measure halo effect and clipping effect, we adopt peak signal-to-

noise ratio (PSNR) in the CIE 1976 L*a*b* color space as our evaluation metric [96]: 
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In Equation (5-1), ΔEmax is the color difference between black and white (ΔEmax = 100 in our 

simulation); ΔE (i, j) is the color difference between the displayed image and the target image on 

the pixel (i, j); m and n are the image resolution (2880×1440 in our example). The color difference 

is defined in L*a*b* color space considering luminance and chrominance differences: 

2 2 2* * * .E L a b        (5-2) 

From definition, higher LabPSNR implies better image reproduction. We will use this evaluation 

metric for further discussions. 

5.2.3 Perception limit 

Local dimming LCD may never reproduce exactly the same image content as emissive 

displays with pixel-level dimming and intrinsic high contrast ratio. Whereas, it is able to provide 

the comparable viewing experience to customers if the difference so small that it exceeds the 

perception limit of human eyes. In order to find the perception limit of noticing halo effect and 

clipping effect, we designed and conducted the following subjective experiments. 

We evaluated ten HDR image contents with dark area and highlight spots, and seventy 

mLED-LCD system configurations: ten local dimming zone numbers and seven LC CRs. For each 

content and each rendering condition, we simulated the displayed image and calculated the 

corresponding LabPSNR taking the original target image as the reference. Eleven people with 
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normal or corrected normal vision (average age = 25.5) independently participated in the 

experiment in a darkroom. In each test, a simulated mLED-LCD displayed image and the 

corresponding target image were displayed on two OLED smartphones (peak luminance = 1000 

cd/m2). Each observer was asked to compare the two images at 25-cm viewing distance and select 

the one they preferred. The location of the two images were randomly shifted to avoid the influence 

of prejudgment and viewing angle. In total, we conducted 770 tests (70 rendering conditions × 11 

observers) and summarized the results in Figure 5-4. 

 

Figure 5-4 Subjective experiment results of perceived image difference versus LabPSNR of the 
images. 

In Figure 5-4, the perceived difference stands for the ratio of observers who are able to 

distinguish the target images from the simulated displayed images by the mLED-LCD system. The 

LabPSNR values of the 70 rendered images scatter over a wide range from 28 dB to 57 dB. The 

yellow bar denotes the averaged perceived difference ratio in each LabPSNR range, and the black 

error bar marks the standard deviation of the experimental data. The blue solid line is fitted with 

cumulative distribution function [21,97]. Here, it delineates the probability that people can 
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perceive the difference at a given image pair with LabPSNR. The good match between fitting curve 

and experimental data delivers the first message: LabPSNR could be used to predict the human 

perceptibility of the displayed images. The second message can be found from the blue cross in 

Figure 5-4, for a displayed image with LabPSNR > 47.4 dB, only less than 5% of people could 

perceive the difference between the displayed image and target image, indicating an effective 

suppression of halo effect and clipping effect. In the following discussions, we will use LabPSNR > 

47.4 dB as our optimization target. 

5.3 Optimization strategies 

5.3.1 Local dimming zone number and LC contrast ratio 

Mini-LED backlight unit can suppress halo effect and clipping effect by properly choosing 

LC CR and local dimming zone density [30]. Through simulations, we found the correlation 

between the LC CR, local dimming zone number and LabPSNR, as plotted in Figure 5-5. In Figure 

5-5, the black dashed lines mark the criterion LabPSNR = 47.4 dB, above which the halo effect 

and clipping effect are unnoticeable for > 95% people. High LabPSNR can be acquired by 

increasing the number of local dimming zones and by increasing the LC CR. If the LC CR is 

1000:1, e.g. the CR of a twisted nematic (TN) LC panel, then even 10 000 zones are still inadequate. 

However, for a fringing-field switching (FFS) LC panel with CR = 2000:1, LabPSNR > 47.4 dB 

can be acquired with ~ 3000 local dimming zones. Moreover, when a multi-domain vertical 

alignment (MVA) LC panel with CR = 5000:1 is employed, that criterion can be met with ~ 200 

zones. Larger number of local dimming zones can further reduce the perceptibility on the less than 
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5% people, but the tradeoff is a higher panel cost. To be noticed, these results are based on a 6.4-

inch smartphone placed at 25-cm viewing distance. They can be scaled up and applied to large-

size panels as well [21]. 

 
Figure 5-5 Simulated LabPSNR for HDR display systems with various local dimming zone 
numbers and contrast ratio. 

5.3.2 LED light expansion and local light confinement 

The number of local dimming zones and LC CR have the dominant impacts on local 

dimming effect. However, between two comparable panels (similar LC CR, panel size and viewing 

distance), sometimes the one with fewer local dimming zones could exhibit a better performance, 

which is contradictory to the general trend shown in Figure 5-5. This conflict comes from the 

different optical designs, where LED light expansion and local light confinement also jointly 

contribute to the final local dimming performance. In the following, we will discuss the influence 

of each factor and then suggest the corresponding optimization strategies. 

From mLED backlight to LC layer, the light profile of each LED could expand from the 

original square-shaped Lambertian distribution to a Gaussian-like spatial and Lambertian-angular 
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profile. The final profile is influenced by several factors including the LED emission aperture, the 

distance between mLEDs and diffuser, and other optical layers such as brightness enhancement 

film, dual brightness enhancement film, etc. Figure 5-6 depicts an exemplary one-dimensional 

light profile. Here, we assume six mLEDs (NLED = 6) locate at xLED = ±0.5, ±1.5, and ±2.5, with 

an interval ΔxLED = 1. In reality, there are 6×6 mLEDs in the central dimming zone. They are 

turned-on together, while the adjacent zones are dimmed to the dark state. In Figure 5-6, each 

black curve depicts the light profile entering the LC layer from each individual mLED, and the 

blue curves delineate the single-zone light profile. Because the light experiences propagation and 

diffusion before entering the LC layer, here we use Gaussian function to fit the expanded single-

LED light profile: 
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where xLED_c is the locus of the source LED and σ is an expansion characteristic parameter.  

 
Figure 5-6 Simulated spatial profiles of local dimming BLUs with different σ / xLED values. 

In Figure 5-6, the vertical red dashed lines denote the local dimming zone borders. As we 

can see, a small σ / xLED helps confine the light in the local area [Figure 5-6(a)] while more than 

one-half of the light energy would spread outside the zone when σ / xLED is large [Figure 5-6(c)]. 
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Such a crosstalk could impair the local dimming function and give rise to the unwanted halo effect 

and clipping effect.  

 
Figure 5-7 Simulated LabPSNR for HDR display systems. The blue, red and yellow lines stand for 
CR = 1000:1, 2000:1 and 5000:1, respectively. 

Figure 5-7 shows that for a given number of LEDs in a local dimming zone (NLED), better 

image fidelity (higher LabPSNR) can be obtained by a smaller σ / xLED, corresponding to a smaller 

LED emission aperture and shorter optical distance. The latter leads to a thinner panel profile. 

However, the associated challenges are thermal management, manufacturing yield, and especially 

the compromised luminous uniformity. Figure 5-6(a) shows that if the LED light does not spread 

wide enough, the resultant backlight intensity could be very sensitive to the spatial location. 

Therefore, a proper σ / xLED should be selected. For instance, σ / xLED = 0.5 could provide > 97% 

backlight uniformity, which enables unnoticeable halo effect and clipping on a local dimming LCD 

with 2×2 LEDs per local dimming zone and CR = 2000:1 [Figure 5-7(b)]. In Figure 5-7, if we 

compare the LabPSNR values at σ / xLED = 0.5 and an identical CR, we find that a smaller NLED 

leads to a higher LabPSNR. The reason is that here we use the same LED dimension parameters 

and panel size for simulation. In other words, the smaller NLED, the larger number of local dimming 

zones, therefore the higher LabPSNR. In a mLED backlit LCD system, σ / xLED can be obtained by 

Gaussian fitting the expanded spatial luminous profile of each mLED. 
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To reduce crosstalk between adjacent local dimming zones without compromising 

uniformity, optical structures such as bank isolation [98] or lens collimation [99] can be employed 

at zone level. Ideally, a rectangular light profile can generate uniform local dimming backlight 

without crosstalk. Whereas, in practical designs only flattop profile can be realized, which can be 

described by a super-Gaussian function as: 
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Similar to above discussion, here we assume the center of the local dimming zones (xzone_c) 

are xzone = 0, ±1, ±2, … with interval Δxzone = 1. In Figure 5-8, each black curve depicts a spatial 

profile of light generated by the zone under its curve center, while the red dashed lines delineate 

the borders of the zone at xzone_c = 0. We set σ / xzone ~ 0.5 in order to obtain good overall uniformity, 

as the blue curves indicate. Figure 5-8 shows that as β increases from 2 to 25, the crosstalk is 

reduced so that the clipping effect is lessened accordingly. Although the uniformity is improved 

noticeably from Figure 5-8(a) to Figure 5-8(c), at large β [Figure 5-8(c)] we found abrupt 

luminance change at zone borders. If the compensation at borders is not performed carefully, the 

incongruous lines could be noticeable in the actual display panel. In practical manufacturing, this 

issue can be aggravated by uneven distribution of local dimming zone and the misalignment 

between local dimming zone and compensation.  
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Figure 5-8 Simulated spatial profiles of different local dimming BLU with different β. 

 

Figure 5-9 demonstrates that good light confinement (high β) helps improve image quality. 

As β increases, LabPSNR increases initially but saturates as β exceeds 4.5. This implies local light 

confinement is helpful to certain degree. In contrast, high LC CR and short zone pitch (pzone) help 

enhance the LabPSNR value more obviously. When β > 2, an unnoticeable halo effect and clipping 

effect can be achieved for the LC panels with CR > 1000:1 (blue lines), 2000:1 (red lines) and 

5000:1 (yellow lines) with pzone = 1 mm [Figure 5-9(a)], 2 mm [Figure 5-9(b)] and 6 mm [Figure 

5-9(c)], respectively. In practice, β can be extracted from a mLED enhanced LCD by super-

Gaussian fitting the spatial luminous profile of single-lit local dimming zone. 

 
Figure 5-9 Simulated LabPSNR for HDR display systems with various pzone. The blue, red and 
yellow lines stand for LC CR=1000:1, 2000:1 and 5000:1, respectively. 
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5.4 Conclusion 

In this chapter, we developed a simplified model for optimizing high contrast ratio mLED-

LCD system. Through numerical simulation and subjective experiments, we find that the halo 

effect and clipping effect in local dimming LCD can be suppressed to an unnoticeable level by 

increasing LC CR and local dimming zone number. Specifically, we found that for a 6.4-inch 

smartphone at 25-cm distance, around 3000 and 200 local dimming zones are required for an FFS 

LCD with CR = 2000:1 and an MVA LCD panel with CR = 5000:1, respectively. These results 

can be extended to large-size panels according to the viewing distance. Besides, confining light in 

each local dimming zone can reduce inter-zone crosstalk, which alleviates halo effect and clipping 

effect from the root. We found that it is beneficial to have flattop spatial light profile for each local 

dimming zone, which significantly improves display fidelity from the Gaussian distribution 

generated from thick diffuser, and that is less vulnerable to backlight uniformity and misalignment 

tolerance issues than square-shaped profile. This work paves the way for achieving HDR 

performance in mLED-LCDs. 
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CHAPTER 6 HIGH POWER EFFICIENCY 

6.1 Introduction 

Absolute high peak luminance is indispensable in high dynamic range displays, not only 

for faithfully reproducing highlight image contents, but also for enhancing ambient contrast ratio. 

Whereas, in systems with limited output power efficiency, high luminance can cause short battery 

time and thermal management issues. In non-emissive LCDs, though high luminance can be 

boosted by the inorganic LED backlight, the optical efficiency is relatively low (~ 5%). Emissive 

displays have much higher optical efficiency (40% ~ 90%), but the overall power efficiency does 

not increase proportionally. In OLED emissive displays, that results from the lower external 

quantum efficiency (EQE) of OLED chips than inorganic LEDs. Even worse is that organic 

materials are vulnerable to fast aging [14] and efficiency roll-off [15] at high luminance. Inorganic 

LED materials are inherently robust. Hence, high luminance does not impair the lifetime of 

inorganic mLED/μLED displays. However, the EQE of inorganic mLED/μLED chips is very 

sensitive to chip size and current density [20,31,32]. If improperly operated, most of the energy 

will be consumed by non-radiative recombination, resulting in low power efficiency. Specifically, 

the EQE of LED chip (EQEchip) is the product of LED internal quantum efficiency (IQE) and light 

extraction efficiency. Figure 6-1(a) depicts the current density dependent IQE of blue inorganic 

LEDs with various chip size (data from [31,32]). In physics, Shockley-Read-Hall non-radiative 

recombination and Auger non-radiative recombination respectively impair the IQE of inorganic 

LED chips at low current density and high current density [31]. Consequently, the peak of EQEchip 

locates at moderate current density. Small chips have higher surface-to-volume ratio so that 
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Shockley-Read-Hall non-radiative recombination is aggravated. Correspondingly, we can see 

small chips have lower IQE in the low current density region in Figure 6-1(a). Besides, although 

high EQEchip has been achieved on large chips (e.g. > 80% on blue), μLEDs (s < 50 μm) endure 

insufficient light extraction [100]. The state-of-the-art peak EQEchip of R/G/B (red/green/blue) 

mLED/μLED chips is summarized in Figure 6-1(b) [20,101,102], as denoted by R/G/B line colors, 

respectively. We can see that small chip size could harm the peak EQEchip on R/G/B inorganic 

LEDs. 

 

Figure 6-1 (a) Current density dependent internal quantum efficiency (IQE) for different 
mLED/μLED chip size. (b) Chip size dependent peak EQEchip of R/G/B mLED/μLED chips, represented 
by R/G/B line colors, respectively. 

In order to develop high-luminance mLED/μLED displays with high power efficiency, in 

this chapter, we build a power efficiency model for mLED/μLED displays. Our study starts from 

LED physics and integrates the factors of display optical systems. We apply the model to RGB-

chip emissive displays, color conversion emissive displays and mLED-LCDs, and find the model 

in good agreement with experimental measurements. Our model provides a power consumption 

evaluation method from physics, and reveals that proper system configuration, small emission 
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aperture ratio and pulse width modulation are critical methods to enhance the power efficiency of 

mLED/μLED displays. 

6.2 Power efficiency model 

6.2.1 Monochrome LED power efficacy 

The analysis starts from the input electrical power (PLED [unit: W]) of a mLED/μLED: 

,LED FP V I       (6-1) 

where I is the current through LED, and VF is the LED forward voltage. The output optical power 

(Pop [unit: W]) is: 

.op chip ph

I
P EQE E

e
      (6-2) 

Here e and Eph stand for elementary charge and photon energy, respectively. The luminous flux 

emitted from the LED (Φ [unit: lm]) is related to Pop and luminous efficacy (K [unit: lm/W]) as: 

,opK P        (6-3) 
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where V(λ) is the spectral luminous efficacy and S(λ) is the LED emission spectrum. From above 

equations, the LED power efficacy (ηLED [unit: lm/W]) can be expressed as:  

.
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6.2.2 Full-color device power efficacy 

Next, we would consider the device structure beyond LED chip. Assuming the system 

optical efficiency as Tsys, the on-axis panel luminance (L [unit: cd/m2]) for j = R, G, B colors is 

,

2
.

j sys j

j

j

T
L

p F

 



    (6-6) 

Here, p is the pixel pitch and F [unit: sr] is the conversion coefficient from on-axis luminous 

intensity [unit: cd] to luminous flux Φ [unit: lm]: 

 , sin ,j jF f d d            (6-7) 

where f (θ, φ) is the angular profile of display intensity as a function of polar angle θ and azimuthal 

angle φ. Correspondingly, the on-axis luminous power efficacy (η [unit: cd/W]) is  
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In full-color displays, in order to obtain D65 white light (luminance LW), the monochromatic 

luminance Lj is mixed by  
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    (6-9) 

where the color mixing ratio rj satisfies  

1.R G Br r r       (6-10) 

From Equation (6-8), the on-axis luminous power efficacy for mixed white light is  
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In the following discussion, we use Equation (6-11) to evaluate the ηW of mLED/μLED displays 

with different system configurations. 

6.2.3 RGB-chip emissive displays 

 

Figure 6-2 Optical structure of a RGB-chip mLED/μLED emissive display. 

Figure 6-2 illustrates the optical structure of a RGB-chip mLED/μLED emissive display. 

In this type, R/G/B mLED/μLED chips are adopted and each chip serves as a subpixel. The light 

is emitted upward and downward from LEDs. In order to reflect the downward light upward, a 

reflective electrode is commonly deposited at the bottom of each LED chip. Whereas, such a 

reflector also reflects the incident ambient light, which could degrade the ambient contrast ratio. 

In order to enhance ambient contrast ratio, a circular polarizer (CP) is optionally laminated above 

LEDs. In some CP-free configurations, tiny LED chips are adopted to reduce the aperture ratio, 

and the non-emitting area is covered by black matrix so that most of the ambient light is absorbed. 

This small-aperture strategy is unique for inorganic LEDs. In comparison, large chip size is needed 

for OLED displays in order to achieve long lifetime and high luminance so that a CP is necessary 

[33]. In CP-laminated designs, Tsys equals to TCP = 42%. For RGB-chip emissive mLED/μLED 

displays, F is determined by the LED’s angular emission profile, which is close to Lambertian (F 

= π sr). The mLED/μLED sidewall emission increases the ratio of light emitted to large angles, 

leading to a larger F and lowers the ratio of light contributing to on-axis intensity. This 
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phenomenon is more severe on the smaller-size μLEDs [100]. For RGB-chip emissive displays, 

the on-axis luminous power efficacy is: 
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Table 6-1 On-axis power efficacy of a RGB-chip mLED emissive display. 

Color Red Green Blue 

K (lm/W) 260 652 77 

Eph (J) 3.2×10-19 3.7×10-19 4.2×10-19 

EQEchip 0.11 0.31 0.45 

VF (V) 1.72 2.33 2.49 

F (lm/cd) 4.67 3.67 3.67 

TCP 0.42 

r 0.270 0.616 0.114 

ηRGB (cd/W) 2.9 22.9 4.2 

P / PW 0.63 0.18 0.19 

ηRGB,W (cd/W) 6.8 

 

Table 6-1 is an exemplary calculation for a RGB-chip mLED emissive display. We used 

the data of R/G/B mLED chips (dimension = 90 μm × 130 μm) operated at I = 50 μA, and found 

ηRGB,W as 6.8 cd/W. From Table 6-1 we can see, because of the relatively low EQEchip,R, the red 

chip consumes more than half of the power. Technology innovation to improve EQEchip,R of mLED 

is urgently needed. Figure 6-3 depicts the simulated chip size dependent ηRGB with data in Figure 

6-1(b). The R/G/B and black lines stand for the simulated values for R/G/B and white light, 
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respectively. We can see green light has a higher ηRGB than the red/blue, which results from the 

larger KG – higher human eye responsivity. The left axis and the right axis in Figure 6-3 are for 

devices without and with a circular polarizer, respectively. The difference between the two axes is 

TCP. For large-aperture RGB-chip emissive displays, the CP lamination will cut the optical 

efficiency by more than a half, resulting in relatively low ηRGB. 

 

Figure 6-3 Chip size dependent on-axis luminous power efficacy of a RGB-chip mLED/μLED 
emissive display. The R/G/B and black lines stand for the simulated values for R/G/B and white 
light, respectively. The left axis and the right axis are for optical structures without and with 
circular polarizer, respectively.  

6.2.4 Color conversion emissive displays 

 

Figure 6-4 Optical structure of a color conversion mLED/μLED emissive display. 

Figure 6-4 illustrates the optical structure of a color conversion mLED/μLED emissive 

display. In this type, each blue LED chip pumps a subpixel in the registered color conversion layer 
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so that it bypasses the need of high-EQEchip red mLEDs/μLEDs. In Figure 6-4, color conversion is 

realized by a quantum dot color filter (QDCF) [103]. The overall EQE for each subpixel becomes 

a product of blue chip EQE (EQEchip,B) and QDCF’s color conversion efficiency (EQEQDCF). Here, 

EQEQDCF is jointly determined by the film’s quantum yield and the light extraction efficiency. In 

color conversion emissive displays, the image quality may be degraded for two reasons: 1) The 

unconverted blue light may leak out from red and green subpixels; 2) the shortwave component in 

ambient light may excite the QDs. In order to absorb the unconverted blue light and to suppress 

ambient excitation, an absorptive color filter is above registered, which can be presented by its 

transmittance (TCF). It also alleviates ambient light reflection so that no circular polarizer is needed. 

In some designs, a distributed Bragg reflector (DBR) is inserted to selectively recycle the 

unconverted blue light [104] or to enhance the red and green output efficiency [105]. For color 

conversion emissive mLED/μLED displays, F is determined by the angular profile of the light 

output color conversion layer and absorptive color filter, which is also close to Lambertian (F = π 

sr). For color conversion emissive displays, the on-axis luminous power efficacy is: 
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Table 6-2 is an exemplary calculation for a color conversion mLED/μLED emissive display. 

Using the same blue mLED that adopted in Table 6-1, ηCC,W of a color conversion mLED emissive 

displays is 12.0 cd/W. Figure 6-5 depicts the simulated chip size dependent ηCC with data in Figure 

6-1(b). Similar to Figure 6-3, the R/G/B and black lines stand for the simulated values for R/G/B 

and white light, respectively. In above calculations, we used EQEQDCF = 0.3~0.38 as reported by 

Nanosys [103]. As EQEQDCF being improved, the color conversion type can be more power saving. 
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Table 6-2 On-axis power efficacy of a color conversion mLED emissive display. 

Color Red Green Blue 

K (lm/W) 207 561 77 

Eph (J) 3.2×10-19 3.7×10-19 4.2×10-19 

EQEchip - - 0.45 

VF (V) - - 2.49 

EQEQDCF 0.38 0.30 0.9 

EQEchip,B · EQEQDCF 0.17 0.13 0.41 

F (lm/cd) 3.14 3.14 3.14 

TCF 0.82 0.91 0.72 

r 0.293 0.594 0.113 

ηCC (cd/W) 7.4 20.6 7.5 

P / PW 0.47 0.35 0.18 

ηCC,W (cd/W) 12.0 

 

 

Figure 6-5 Chip size dependent on-axis luminous power efficacy of a color conversion 
mLED/μLED emissive display. The R/G/B and black lines stand for the simulated values for 
R/G/B and white light, respectively. 
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6.2.5 Mini-LED backlit LCDs 

 

Figure 6-6 Optical structure of a mLED backlit LCD with a RGB absorptive color filter. 

As illustrated in Figure 6-6, a mLED-LCD is to substitute the traditional backlight of LCD 

with a local dimming mLED backlight unit (BLU). In such a BLU, the mLEDs do not need to 

register with the subpixels in LC panel so that larger LED chips can be used. The main power 

consumption of mLED-LCD originates from the BLU. In Figure 6-6, the blue LED light is 

converted to white through a yellow color conversion film with efficiency EQEQDEF (≈ 0.73 from 

3M quantum dot enhancement film). Similar to color conversion emissive displays, mLED BLU 

can optionally adopt a DBR. Because the color conversion layer scatters light, up to two brightness 

enhancement films (BEFs) can be employed to collimate light onto on-axis direction. A dual 

brightness enhancement film (DBEF) can be inserted to transmit the preferred polarization, which 

is parallel to the transmission axis of the first polarizer in LC panel, and to recycle the orthogonal 

polarization. As an example, F can be reduced to 0.96 sr by applying two BEFs and one DBEF 

(3M VikuitiTM). These optical films correspond to a luminous transmission TBLU (≈ 0.9). Then the 
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light is modulated by a LC panel with an absorptive RGB color filter array whose optical efficiency 

is TLCD (≈ 5%). For mLED-LCDs, the on-axis luminous power efficacy is: 
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Table 6-3 On-axis power efficacy of a mLED backlit LCD with a RGB absorptive color filter. 

Color Red Green Blue 

K (lm/W) 186 526 84 

Eph (J) 3.1×10-19 3.7×10-19 4.3×10-19 

EQEchip - - 0.5 

VF (V) - - 2.8 

EQEQDEF 0.73 0.73 1 

EQEchip,B · EQEQDEF 0.37 0.37 0.5 

TBLU 0.9 

F (lm/cd) 0.96 

TLCD 0.05 

r 0.247 0.672 0.081 

ηLCD (cd/W) 2.2 7.4 1.9 

P / PW 0.45 0.37 0.18 

ηLCD,W (cd/W) 4.1 

 

Table 6-3 is an exemplary calculation for a mLED-LCD. The simulated ηLCD,W is 4.1 cd/W. 

For a 65-inch 4K-resolution TV with 1000-cd/m2 peak luminance, the corresponding power 

consumption is PLED,W = 284 W, which agrees very well with the measured 280 W. Figure 6-7 

depicts the simulated chip size dependent ηLCD with data in Figure 6-1(b). Similar to Figure 6-3 
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and Figure 6-5, the R/G/B and black lines stand for the simulated values for R/G/B and white light, 

respectively. To be noticed, in emissive displays, the chip size should be smaller than the pixel 

pitch. But larger-size LEDs can be used in mLED BLU, enabling higher EQEchip. In some designs, 

a RGBW color filter is employed, corresponding to a higher TLCD (≈ 10%) and a doubled ηLCD. 

 

Figure 6-7 Chip size dependent on-axis luminous power efficacy of a mLED backlit LCD with a 
RGB absorptive color filter. The R/G/B and black lines stand for the simulated values for R/G/B 
and white light, respectively. 

6.3 Enhancement strategies 

6.3.1 Proper system configuration 

System configuration predetermines the power efficacy. Figure 6-8 summarizes the chip-

size dependent on-axis luminous power efficacy of the abovementioned system configurations. As 

a reference, we added a RGB-chip OLED emissive display in Figure 6-8, as shown by the black 

dashed lines, whose EQEchip does not vary drastically with chip size and operation current density. 

Here, state-of-the-art OLED chips [106-109] are used in evaluation, whose EQEchip for [R, G, B] 

chip is [0.27, 0.24, 0.10]. In Figure 6-8, we can see that the mLED-LCD with a RGB color filter 

has a comparable ηW with the RGB-chip OLED emissive display. When s = 100 ~ 200 μm, CP-
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free (as delineated by the blue line) and CP-laminated (as the red line depicts) RGB-chip mLED 

emissive displays respectively show ~ 5× and ~ 2× higher ηW than mLED-LCD and the OLED 

display; while the ηW of the color conversion mLED emissive display (as shown by the yellow line 

in Figure 6-8) is ~ 2.5× higher. When s < 50 μm, ηW decreases noticeable as the chip size shrinks. 

From the on-axis power efficacy viewpoint, we received the following system configuration 

preference order: 1) CP-free RGB-chip mLED/μLED emissive display, 2) color conversion 

mLED/μLED emissive display, 3) CP-laminated RGB-chip mLED/μLED emissive display, 4) 

mLED-LCD and CP-laminated RGB-chip OLED emissive display. 

 

Figure 6-8 Chip size dependent on-axis luminous power efficacy of a CP-free and a CP-
laminated RGB-chip mLED/μLED emissive display, a color conversion mLED/μLED emissive 
display, a mLED backlit LCD with a RGB absorptive color filter, and a CP-laminated RGB-chip 
OLED emissive display. 

To be noticed, in simulating the ηW of mLED/μLED displays in Figure 6-8, peak EQEchip 

data from Figure 6-1(b) are used. In practice, LEDs may be operated at lower EQEchip, indicating 

lower ηW. From Equation (6-8), ηLED is proportional to EQEchip / VF so that high EQEchip / VF 

operation is beneficial to device power saving. Here, we use an example to show the influence of 

operation spot. Figure 6-9 depicts the characteristics of a set of R/G/B mLEDs with dimension 90 

μm × 130 μm. The R/G/B chips are presented by R/G/B line colors. Figure 6-9(a) shows that the 
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red chip exhibits lower EQEchip than the green and blue chips. Apart from the IQE difference on 

R/G/B chips, the red semiconductor material (AlGaInP) has higher refractive index than the blue 

and green material (InGaN), leading to a lower light extraction efficiency on red chips. Figure 

6-9(b) shows normalized EQEchip / VF as a function of current. The most power efficient LED 

working spots are at the peaks of EQEchip / VF. However, the LED luminance at these peaks is too 

high: 3~5 orders brighter than a normal display with 1000-cd/m2 white luminance. In order to drive 

LED chips with high efficiency for normal-brightness panels, small aperture ratio and pulse width 

modulation (PWM) methods are highly recommended. 

 

Figure 6-9 Characteristics of R/G/B mLED chips, presented by R/G/B lines, respectively. (a) 
EQEchip as a function of current density. (b) Normalized EQEchip / VF as a function of current. 

6.3.2 Small aperture ratio 

Small aperture ratio can map a high LED luminance with a low panel luminance. As drawn 

in Figure 6-10, the aperture ratio (AP) and LED chip size (s) are defined as: 
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Here l1 and l2 denote the two dimensions of LED chip, respectively. Because the panel luminance 

is averaged from the whole pixel, the panel luminance is AP / 3 times of the LED chip white 

luminance. For instance, the [R/G/B] LED chip color luminance of a panel is [30 000 cd/m2, 60 

000 cd/m2, 10 000 cd/m2], corresponding to 100 000-cd/m2 white luminance. If AP = 3%, then the 

panel luminance is 1000 cd/m2. By applying small aperture ratio, LED chips can be operated at 

1~2 orders higher luminance than the panel.  

 

Figure 6-10 Pixel layout and dimensions of a mLED/μLED display. Each color pixel consists of 
three R/G/B subpixels 

6.3.3 Pulse width modulation 

The luminance of a display can be controlled by either pulse amplitude modulation (PAM) 

or pulse width modulation (PWM). PAM, also called analog driving, is to keep identity emission 

time in each frame, while the amplitude of electrical signal controls luminance. For a LCD, the 

voltage across the LC layer tunes light transmittance. For a mLED/μLED, the flowing current 

regulates light emittance. PWM is also denoted as digital driving, which is to switch the electrical 

signal between binary states (on or off at a constant signal amplitude), and to tune the luminance 

by adjusting the emission time in each frame. The ratio of emission time over frame time (Tf) is 
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duty cycle (DC). As illustrated in Figure 6-11, if the instant luminous flux at on-state is Φins, then 

the perceived effective luminous flux (Φeff) is 

 .eff ins DC       (6-17) 

The effective LED power efficacy (ηLED,eff) can still be calculated by Equation (6-5) since 
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    (6-18) 

PWM can enhance power efficiency by the following method: Operate mLED/μLED chips at high 

EQEchip / VF spots. Assuming panel luminance = 10 000 cd/m2 at DC = 100%, we can set DC = 

10% for the target peak panel luminance (1000 cd/m2). For low gray levels, adjust DC in the range 

of 0~10%. In this way, high efficiency is maintained at all gray levels, and the peak panel 

luminance is one order lower than the LED luminance. In some cases, the LED emission time at 

extremely low gray levels is too short for the drivers to support. In such a situation, hybrid driving 

may be adopted. Hybrid driving is to employ PWM at high gray levels for high efficiency and 

implement PAM at low gray levels for good gray level accuracy. Although the EQEchip / VF is not 

at the maximum when presenting low gray levels in hybrid driving, the overall power consumption 

remains low. 

 

Figure 6-11 Schematic of duty cycle and effective luminance. 
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Depending on DC, the instant LED luminance can be 1~2 orders higher than the time 

average. In combination with small-aperture layout, additional 1~2 orders higher luminance can 

be attained from spatial average. In total, LEDs can be operated at around three orders higher 

instant luminance than the panel average. For the LEDs depicted in Figure 6-9, it means > 2× 

power saving. 

6.4 Conclusion 

In this chapter, we built a new model for simulating and optimizing the power efficiency 

of mLED/μLED displays. we considered the size effect of inorganic mLED/μLED chips and 

applied the model to different system configurations. Our simulation results show that mLED-

LCD is comparable power consuming as CP-laminated RGB-chip OLED emissive displays, while 

color conversion mLED/μLED emissive displays, CP-free and CP-laminated RGB-chip 

mLED/μLED emissive displays respectively show up to 2.5×, up to 5× and up to 2× higher on-

axis luminous power efficacy depending on the chip size of mLEDs/μLEDs. Moreover, based on 

inorganic LED characteristics, we demonstrated that small-aperture design and pulse width 

modulation are critical methods to achieve > 2× power saving. 
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CHAPTER 7 HIGH AMBIENT CONTRAST RATIO 

7.1 Introduction 

As discussed in Chapter 5, contrast ratio is a specification reflecting display’s performance 

in darkroom. Nevertheless, display devices are frequently operated under ambient light. The 

reflected ambient light is also perceived in additional to the displayed contents. Under such a 

circumstance, the perceived image quality is represented by ambient contrast ratio (ACR), which 

is defined as follows [33]:  
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   (7-1) 

Here, Lon and Loff (<< Lon for high-contrast displays) are the on- and off-state luminance of display, 

and Iam and RL stand for the ambient illuminance and luminous reflectance of display panel, 

respectively. Figure 7-1 shows the simulated perceived pictures with different Lon and RL under 

full daylight (Iam = 20 000 lux). The ACR is marked on the right bottom corner of each picture. 

From Equation (7-1) and Figure 7-1, the first method to enhance ACR is to boost Lon by the input 

power. As discussed in Chapter 6, high luminance can be managed, but high power consumption 

follows. The second way to improve ACR is to lower RL, nonetheless Lon is also compromised in 

most designs. Consequently, systematic optimization is essential.  
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Figure 7-1 Simulated perceived images with the specified panel peak luminance and luminous 
reflectance under full daylight (Iam = 20 000 lux). The ambient contrast ratio is marked on the 
right bottom corner of each picture. 

In this chapter we propose a figure-of-merit as a powerful tool to comprehensively optimize 

the power efficiency and luminous reflectance to enhance the ACR of mLED/μLED displays. Our 

model especially benefits RGB-chip mLED/μLED emissive displays and color conversion 

mLED/μLED emissive displays. It applies to various applications such as smartphones, gaming 

monitors and TVs. We also simulate the performance of RGB-chip OLED emissive displays and 

mLED-LCDs for comparison purpose. 

7.2 Luminous reflectance 

Figure 7-2 schematically shows the ambient reflection of mLED/μLED emissive displays. 

LED array and the optional optical films are encapsulated by bonding layers and a protection glass. 

The luminous reflectance can be described by: 

 1 .L s s APR R R AP R         (7-2) 
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Figure 7-2 Schematic of ambient light reflection on mLED/μLED emissive display panels.  

In Figure 7-2 and Equation (7-2), Rs, AP and RAP stand for surface reflectance, aperture 

ratio and aperture luminous reflectance, respectively. Ambient reflection mainly consists of two 

parts: external surface reflection and internal reflection on LED electrode. First, as the blue arrow 

in Figure 7-2 denotes, external reflection is generated at the protection glass. Normally, Rs is ~ 4.0% 

for a glass-air surface, but it can be reduced to < 1.0% by sputtering anti-reflection coating on the 

substrates. In the following analyses, we use Rs = 2.0% for discussion purpose. Second, the internal 

reflection is presented by the orange arrow in Figure 7-2. As illustrated in Figure 6-10, because 

black matrix absorbs the transmitted ambient light [e.g. Iam · (1 - Rs)], only the light that falls in 

the aperture is internally reflected. Accordingly, in Equation (7-2), the second term of RL is 

proportional to AP. The luminous reflectance of aperture area (RAP) is simulated by: 
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where V(λ) is the photopic human eye sensitivity function, as shown in Figure 7-3(a); S(λ) is the 

spectrum of the ambient light (CIE Standard Illuminant D65), as plotted in Figure 7-3(b); and R(λ) 

is the spectral internal reflectance of intensity in aperture area.  
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Figure 7-3 (a) Photopic human eye sensitivity function. (b) Spectrum of the ambient light (CIE 
Standard Illuminant D65). 

RAP is related to the optical structure. In CP-free RGB-chip mLED/μLED emissive displays, 

RAP is mainly determined by LED bottom electrode and LED material. For instance, the luminous 

reflectance of blue LED varies from 5.4% on ITO (indium tin oxide) transparent electrode to 92.3% 

on silver reflective electrode. In the following simulation, we use high-conductivity gold electrode. 

Figure 7-4 depicts the R(λ) of red AlGaInN LED and green/blue GaN LED with gold bottom 

electrode, corresponding to RAP = [0.33, 0.67, 0.67] for [R, G, B] chip and 55.8% on average. In 

color conversion mLED/μLED emissive displays, ambient light excites quantum dots. The 

insertion of color filter (CF) helps suppress ambient excitation, which enables a drop of RAP from 

58.6% to 7.7%. On the other hand, some configurations do not suffer from internal reflection. In 

mLED-LCDs, ambient light is absorbed by the crossed linear polarizers in LCD. In RGB-chip 

mLED/μLED/OLED emissive displays, a circular polarizer can effectively cut off internal 

reflection. In these absorptive-polarizer-integrated systems, we take the approximation of RL ≈ Rs 

because RAP is negligible compared with Rs. 
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Figure 7-4 Spectral internal reflectance of red AlGaInN LED and green/blue GaN LED with gold 
bottom electrode. 

Figure 7-5 depicts the simulated aperture ratio dependent ambient luminous reflectance of 

the specified display configurations. As expected, in CF-free color conversion (CC) mLED/μLED 

emissive displays (as shown by the blue line in Figure 7-5) and CP-free RGB-chip mLED/μLED 

emissive displays (as shown by the red line in Figure 7-5), RL substantially increases as AP 

increases due to the high RAP. The RL of color conversion mLED/μLED emissive displays can be 

considerately lowered by an absorptive CF (as shown by the yellow line in Figure 7-5). Moreover, 

a lower RL can be acquired in mLED-LCDs or CP-laminated RGB-chip mLED/μLED/OLED 

emissive displays (as shown by the purple line in Figure 7-5), where RL is mainly determined by 

surface reflection rather than aperture ratio.  
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Figure 7-5 Aperture ratio dependent ambient luminous reflectance (RL) of the specified display 
configurations. 

7.3 Optimization strategy 

In Chapter 6, we studied the size effect of mLED/μLED chips. As chip size becomes larger, 

EQEchip increases [Figure 6-1(b)] and contributes to a desirable higher power efficiency [Figure 

6-8]. Whereas, larger chip size also leads to larger AP and higher RL (Figure 7-5), which makes 

ACR compromised [Equation (7-1)]. It is important to find a balance between panel power 

efficiency and panel luminance reflectance. Based on Equation (7-1), a reasonable assumption 

ACR >> 1, and Equation (6-11), we find 
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In Equation (7-4), the first term π / Iam reflects the ambient environment; the second term Ppanel / 

Apanel is specified by application; and the third term ηW / RL originates from display optics. Because 

only the third term has the freedom of optimization, we define it as the figure-of-merit (FoM): 

.W

L

FoM
R


      (7-5) 

Figure 7-6 delineates chip size dependent ηW / RL for a 50-μm pitch smartphone [Figure 

7-6(a)], a 156-μm pitch (27-inch 4K-resolution) gaming monitor [Figure 7-6(b)] and a 375-μm 

pitch (65-inch 4K-resolution) TV [Figure 7-6(c)]. In Figure 7-6, the black dashed lines denote a 

CP-laminated RGB-chip OLED emissive display, which has close-to-constant ηW and RL so that 

ηW / RL remains flat. The purple dashed lines stand for a mLED-LCD. Because large chips can be 

used in backlight unit, here we use R/G/B mLEDs with s = 100 μm in simulation. The red solid 

lines present CP-laminated RGB-chip mLED/μLED emissive displays, in which configuration 

large chip size boosts ηW and ηW / RL. The blue solid lines and the yellow solid lines depict CP-

free RGB-chip mLED/μLED emissive displays and CF-laminated color conversion mLED/μLED 

emissive displays, respectively. In these two CP-free structures, the small-chip side is impaired by 

Shockley-Read-Hall non-radiative recombination which results in low ηW; the large-chip side 

suffers from high AP indicating high RL; the ηW / RL peaks indicates the optimal choices.  
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Figure 7-6 Chip size dependent ηW / RL with different display technologies: (a) a 50-μm pitch 
smartphone, (b) a 156-μm pitch (27-inch 4K-resolution) gaming monitor, and (c) a 375-μm pitch 
(65-inch 4K-resolution) TV. 

We can use Figure 7-6 to find the optimal system configuration and LED chip size by 

locating the highest ηW / RL. Several messages are delivered in Figure 7-6: 1) As pixel pitch 

increases (from p = 50 μm in Figure 7-6(a) to p = 375 μm in Figure 7-6(c)), the maximum ηW / RL 

becomes larger (from 347 cd/W in Figure 7-6(a) to 599 cd/W in Figure 7-6(c)). 2) At the large AP 

(large chip size) side, CP-laminated RGB-chip mLED/μLED emissive display wins. 3) At the 

small chip size side, CF-laminated color conversion type and CP-free RGB-chip μLED emissive 

display are the most competitive for panels with short pixel pitch (p < 220 μm) and long pixel pitch 

(p > 220 μm), respectively. With proper chip size and the same power supply, mLED/μLED 
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displays can present 1.5 ~ 3× higher ACR than RGB-chip OLED emissive display and mLED-

LCD. 

Numerically, ηW / RL can be used to estimate the ACR perceived by users. For example, 

Figure 7-6(c) is simulated for a 65-inch 4K-resolution TV (p = 375 μm, Apanel = 1.17 m2). Using 

19-μm μLEDs in CP-laminated RGB-chip structure, ηW / RL can reach ~ 600 cd/W. Assuming PLED 

= 95 W apart from the power consumption on panel electronics, the ACR in living room (Iam = 

150 lux) exceeds 1000:1. Such a high ACR has not been achieved by state-of-the-art devices given 

the same panel specifications and viewing conditions. It is the potential of mLED/μLED displays. 

7.4 Conclusion 

In this chapter, we defined a figure-of-merit for systematically optimizing the ambient 

contrast ratio of mLED/μLED displays. Jointly considering power efficiency and ambient 

reflectance, we found the optimal system configuration and LED chip size according to 

applications: 1) CP-laminated RGB-chip type performs the best at large aperture ratio. 2) CF-

laminated color conversion type and CP-free RGB-chip type are the most competitive with small 

LED chip size, while they respectively suit for panels with short pixel pitch (p < 220 μm) and long 

pixel pitch (p > 220 μm). Using our optimization strategy, mLED/μLED displays can achieve 1.5 

~ 3× higher ACR than state-of-the-art OLED displays and mLED-LCDs, and the power 

consumption is not compromised. 
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CHAPTER 8 CONCLUSION 

In order to facilitate the development of the emerging mLED/μLED display technology, in 

this dissertation, we tackle with four key performance factors: response time, contrast ratio, power 

efficiency and ambient contrast ratio. Three system configurations – RGB-chip emissive display, 

color conversion emissive display and mini-LED backlit LCD – are specifically studied. 

To suppress the motion blur of mLED-LCD, we advanced the status in two ways. From 

the aspect of image update delay, we proposed an image-corrected segmented progressive 

emission method, which breaks the tradeoff between image persistence time, data input time and 

duty ratio in conventional emission patterns. These three parameters determine motion blur, 

display resolution/panel size and peak luminance, respectively. Through subjective experiments, 

we verified our method’s effectiveness, and recommend at least 180-Hz/preferred 360-Hz image 

content rate to diminish motion blur. Our new method achieves motion blur suppression on high-

resolution, large-size and high-luminance panels. 

From the aspect of LC response delay, we developed two types of submillisecond LC 

mixtures. The first mixture is a polymer-stabilized blue phase LC for flat panel displays. Our new 

mixture presents the outstanding features: 1) its fast response time helps mitigate motion blur. The 

slowest and average gray-to-gray response time are respectively < 2 ms and < 1 ms. 2) Its voltage 

holding ratio is adequate to support active operation. 3) Its blue phase temperature range (from 

20°C to 75°C) is adequate for indoor applications. 4) Its average dielectric constant is 87, which 

is still below the upper limit for bootstrapping driving. Thus, it facilitates the signal capacity 

charging and reduces the data input time. 5) Using the triangular electrode structure, PSBP-08 can 
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achieve 74% transmittance at 15 V, which enables single-TFT driving. 6) With two-domain 

structure, our blue phase LCD offers indistinguishable gamma shift and wide viewing angle.  

The second effort resides in nematic LCs for LCoS-based augmented reality displays. Our 

new mixtures exhibit high birefringence to enable thin cell gap for fast response time, modest 

dielectric anisotropy for 5-V operation voltage, acceptable resistivity and UV stability, and wide 

nematic range. In experiment, these mixtures enable 2-ms response time in phase-only LCoS and 

submillisecond response time in MTN LCoS amplitude modulators. Our blue phase LC and 

nematic LCs will certainly alleviate motion blur defects. 

For high contrast ratio (CR), we dealt with the biggest problem in local dimming mLED-

LCD: halo effect and clipping effect. We developed a simplified model for simulating and 

optimizing mLED-LCD system. Through numerical simulation and subjective experiments, we 

find that halo effect and clipping effect be suppressed to an unnoticeable level by increasing LC 

CR and local dimming zone number. Specifically, we found that for a 6.4-inch smartphone at 25-

cm distance, around 3000 and 200 local dimming zones are required for an FFS LCD with CR = 

2000:1 and an MVA LCD panel with CR = 5000:1, respectively. These results can be extended to 

large-size panels according to the viewing distance. Besides, confining light in each local dimming 

zone can reduce inter-zone crosstalk, which alleviates halo effect and clipping effect from the root. 

We found that it is beneficial to have flattop spatial light profile for each local dimming zone, 

which significantly improves display fidelity from the Gaussian distribution generated from thick 

diffuser, and that is less vulnerable to backlight uniformity and misalignment tolerance issues than 

square-shaped profile. 
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For low power consumption, we built a new model for simulating and optimizing the power 

efficiency of mLED/μLED displays. we consider the size effect of inorganic mLED/μLED chips 

and applied the model to different system configurations. Our simulation results show that mLED-

LCD is comparable power consuming as circular-polarizer-laminated RGB-chip OLED emissive 

display, while color-filter-laminated color conversion mLED/μLED emissive display, circular-

polarizer-free and circular-polarizer-laminated RGB-chip mLED/μLED emissive displays 

respectively show up to 2.5×, up to 5× and up to 2× higher on-axis luminous power efficacy 

depending on the chip size of mLED/μLED. Moreover, based on inorganic LED characteristics, 

we demonstrated that small-aperture design and pulse width modulation are critical methods to 

achieve > 2× power saving. 

For high ambient contrast ratio, we defined a figure-of-merit for systematically optimizing 

the structure of mLED/μLED displays. Jointly considering power efficiency and ambient 

reflectance, we found the optimal system configuration and LED chip size according to 

applications: 1) circular-polarizer-laminated RGB-chip type performs the best at large aperture 

ratio. 2) Color-filter-laminated color conversion type and circular-polarizer-free RGB-chip type 

are the most competitive with small chip size, while they respectively suit for panels with short 

pixel pitch (p < 220 μm) and long pixel pitch (p > 220 μm). Using our optimization strategy, 

mLED/μLED displays can achieve 1.5 ~ 3× higher ACR than state-of-the-art OLED displays and 

mLED-LCDs, and the power consumption is not compromised. 

With our effects, attractive performance factors such as fast response time, high contrast 

ratio, low power consumption and high ambient contrast ratio can equip mLED/μLED displays. 

The shining of high fidelity mLED/μLED displays in the market is foreseeable. 
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